Cargando…

Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells

Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Yu Mi, Shin, Yubin, Lee, Eun Ji, Lee, Sunyoung, Jeong, Seung Hun, Kong, Hyun Kyung, Park, Eun Young, Kim, Hyoung Kyu, Han, Jin, Chang, Minsun, Park, Jong-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497721/
https://www.ncbi.nlm.nih.gov/pubmed/26158266
http://dx.doi.org/10.1371/journal.pone.0132285
_version_ 1782380547855613952
author Woo, Yu Mi
Shin, Yubin
Lee, Eun Ji
Lee, Sunyoung
Jeong, Seung Hun
Kong, Hyun Kyung
Park, Eun Young
Kim, Hyoung Kyu
Han, Jin
Chang, Minsun
Park, Jong-Hoon
author_facet Woo, Yu Mi
Shin, Yubin
Lee, Eun Ji
Lee, Sunyoung
Jeong, Seung Hun
Kong, Hyun Kyung
Park, Eun Young
Kim, Hyoung Kyu
Han, Jin
Chang, Minsun
Park, Jong-Hoon
author_sort Woo, Yu Mi
collection PubMed
description Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O(2)-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer.
format Online
Article
Text
id pubmed-4497721
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44977212015-07-14 Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells Woo, Yu Mi Shin, Yubin Lee, Eun Ji Lee, Sunyoung Jeong, Seung Hun Kong, Hyun Kyung Park, Eun Young Kim, Hyoung Kyu Han, Jin Chang, Minsun Park, Jong-Hoon PLoS One Research Article Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O(2)-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. Public Library of Science 2015-07-09 /pmc/articles/PMC4497721/ /pubmed/26158266 http://dx.doi.org/10.1371/journal.pone.0132285 Text en © 2015 Woo et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Woo, Yu Mi
Shin, Yubin
Lee, Eun Ji
Lee, Sunyoung
Jeong, Seung Hun
Kong, Hyun Kyung
Park, Eun Young
Kim, Hyoung Kyu
Han, Jin
Chang, Minsun
Park, Jong-Hoon
Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title_full Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title_fullStr Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title_full_unstemmed Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title_short Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells
title_sort inhibition of aerobic glycolysis represses akt/mtor/hif-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497721/
https://www.ncbi.nlm.nih.gov/pubmed/26158266
http://dx.doi.org/10.1371/journal.pone.0132285
work_keys_str_mv AT wooyumi inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT shinyubin inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT leeeunji inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT leesunyoung inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT jeongseunghun inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT konghyunkyung inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT parkeunyoung inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT kimhyoungkyu inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT hanjin inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT changminsun inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells
AT parkjonghoon inhibitionofaerobicglycolysisrepressesaktmtorhif1aaxisandrestorestamoxifensensitivityinantiestrogenresistantbreastcancercells