Cargando…

Escherichia coli as host for membrane protein structure determination: a global analysis

The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary express...

Descripción completa

Detalles Bibliográficos
Autores principales: Hattab, Georges, Warschawski, Dror E., Moncoq, Karine, Miroux, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498379/
https://www.ncbi.nlm.nih.gov/pubmed/26160693
http://dx.doi.org/10.1038/srep12097
Descripción
Sumario:The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production.