Cargando…
Optimal combination of feature selection and classification via local hyperplane based learning strategy
BACKGROUND: Classifying cancers by gene selection is among the most important and challenging procedures in biomedicine. A major challenge is to design an effective method that eliminates irrelevant, redundant, or noisy genes from the classification, while retaining all of the highly discriminative...
Autores principales: | Cheng, Xiaoping, Cai, Hongmin, Zhang, Yue, Xu, Bo, Su, Weifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498526/ https://www.ncbi.nlm.nih.gov/pubmed/26159165 http://dx.doi.org/10.1186/s12859-015-0629-6 |
Ejemplares similares
-
Arrangements of hyperplanes
por: Orlik, Peter, et al.
Publicado: (1992) -
Feature weight estimation for gene selection: a local hyperlinear learning approach
por: Cai, Hongmin, et al.
Publicado: (2014) -
Topics in hyperplane arrangements
por: Aguiar, Marcelo, et al.
Publicado: (2017) -
Hyperplane arrangements: an introduction
por: Dimca, Alexandru
Publicado: (2017) -
Bimonoids for hyperplane arrangements
por: Aguiar, Marcelo, et al.
Publicado: (2020)