Cargando…
Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498620/ https://www.ncbi.nlm.nih.gov/pubmed/26161878 http://dx.doi.org/10.1371/journal.pone.0132552 |
_version_ | 1782380647163101184 |
---|---|
author | Chen, Junning Ahmad, Rohana Suenaga, Hanako Li, Wei Sasaki, Keiichi Swain, Michael Li, Qing |
author_facet | Chen, Junning Ahmad, Rohana Suenaga, Hanako Li, Wei Sasaki, Keiichi Swain, Michael Li, Qing |
author_sort | Chen, Junning |
collection | PubMed |
description | With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. |
format | Online Article Text |
id | pubmed-4498620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44986202015-07-17 Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM Chen, Junning Ahmad, Rohana Suenaga, Hanako Li, Wei Sasaki, Keiichi Swain, Michael Li, Qing PLoS One Research Article With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. Public Library of Science 2015-07-10 /pmc/articles/PMC4498620/ /pubmed/26161878 http://dx.doi.org/10.1371/journal.pone.0132552 Text en © 2015 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chen, Junning Ahmad, Rohana Suenaga, Hanako Li, Wei Sasaki, Keiichi Swain, Michael Li, Qing Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title | Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title_full | Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title_fullStr | Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title_full_unstemmed | Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title_short | Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM |
title_sort | shape optimization for additive manufacturing of removable partial dentures - a new paradigm for prosthetic cad/cam |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498620/ https://www.ncbi.nlm.nih.gov/pubmed/26161878 http://dx.doi.org/10.1371/journal.pone.0132552 |
work_keys_str_mv | AT chenjunning shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT ahmadrohana shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT suenagahanako shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT liwei shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT sasakikeiichi shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT swainmichael shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam AT liqing shapeoptimizationforadditivemanufacturingofremovablepartialdenturesanewparadigmforprostheticcadcam |