Cargando…

Identification of MicroRNAs in Response to Different Day Lengths in Soybean Using High-Throughput Sequencing and qRT-PCR

MicroRNAs (miRNAs) are short, non-coding single-strand RNA molecules that play important roles in plant growth, development and stress responses. Flowering time affects the seed yield and quality of soybean. However, the miRNAs involved in the regulation of flowering time in soybean have not been re...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenbin, Wang, Pengpeng, Li, Yongguang, Zhang, Kexin, Ding, Fuquan, Nie, Tengkun, Yang, Xue, Lv, Qingxue, Zhao, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498749/
https://www.ncbi.nlm.nih.gov/pubmed/26162069
http://dx.doi.org/10.1371/journal.pone.0132621
Descripción
Sumario:MicroRNAs (miRNAs) are short, non-coding single-strand RNA molecules that play important roles in plant growth, development and stress responses. Flowering time affects the seed yield and quality of soybean. However, the miRNAs involved in the regulation of flowering time in soybean have not been reported until recently. Here, high-throughput sequencing and qRT-PCR were used to identify miRNAs involved in soybean photoperiodic pathways. The first trifoliate leaves of soybean that receive the signal of light treatment were used to construct six libraries (0, 8, and 16 h under short-day (SD) treatment and 0, 8, and 16 h under long-day (LD) treatment). The libraries were sequenced using Illumina Solexa. A total of 318 known plant miRNAs belonging to 163 miRNA families and 81 novel predicted miRNAs were identified. Among these, 23 miRNAs at 0 h, 65 miRNAs at 8 h and 83 miRNAs at 16 h, including six novel predicted miRNAs at 8 h and six novel predicted miRNAs at 16 h, showed differences in abundance between LD and SD treatments. Furthermore, the results of GO and KEGG analyses indicated that most of the miRNA targets were transcription factors. Seven miRNAs at 0 h, 23 miRNAs (including four novel predicted miRNAs) at 8 h, 16 miRNAs (including one novel predicted miRNA) at 16 h and miRNA targets were selected for qRT-PCR analysis to assess the accuracy of the sequencing and target prediction. The results indicated that the expression patterns of the selected miRNAs and miRNA targets showed no differences between the qRT-PCR and sequencing results. In addition, 23 miRNAs at 0 h, 65 miRNAs at 8 h and 83 miRNAs at 16 h responded to day length changes in soybean, including six novel predicted miRNAs at 8 h and six novel predicted miRNAs at 16 h. These results provided an important molecular basis to understand the regulation of flowering time through photoperiodic pathways in soybean.