Cargando…
The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
Bacterial two-component regulatory systems (TCSs) facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498774/ https://www.ncbi.nlm.nih.gov/pubmed/26161744 http://dx.doi.org/10.1371/journal.pone.0132843 |
_version_ | 1782380676799004672 |
---|---|
author | Lin, Ming-Feng Lin, Yun-You Lan, Chung-Yu |
author_facet | Lin, Ming-Feng Lin, Yun-You Lan, Chung-Yu |
author_sort | Lin, Ming-Feng |
collection | PubMed |
description | Bacterial two-component regulatory systems (TCSs) facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate that an additional two transport systems, AdeIJK and MacAB-TolC, are also regulated by BaeSR. In the wild type and clinical tigecycline-resistant A. baumannii strains, gene expression of AdeIJK and MacAB-TolC increased after tigecycline induction, implicating their importance to tigecycline resistance in addition to AdeABC. Phenotypic microarray results showed that A. baumannii is vulnerable to certain chemicals, especially tannic acid, after deleting baeR, which was confirmed using the spot assay. The wild-type strain of A. baumannii also exhibited 1.6-fold and 4.4-fold increase in gene expression of adeJ and macB in the medium with 100 μg/mL tannic acid, but the increase was fully inhibited by baeR deletion. An electrophoretic motility shift assay based on an interaction between His-BaeR and the adeA, adeI and macA promoter regions did not demonstrate direct binding. In conclusion, A. baumannii can use the TCS BaeSR in disposing chemicals, such as tannic acid and tigecycline, through regulating the efflux pumps. |
format | Online Article Text |
id | pubmed-4498774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44987742015-07-17 The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii Lin, Ming-Feng Lin, Yun-You Lan, Chung-Yu PLoS One Research Article Bacterial two-component regulatory systems (TCSs) facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate that an additional two transport systems, AdeIJK and MacAB-TolC, are also regulated by BaeSR. In the wild type and clinical tigecycline-resistant A. baumannii strains, gene expression of AdeIJK and MacAB-TolC increased after tigecycline induction, implicating their importance to tigecycline resistance in addition to AdeABC. Phenotypic microarray results showed that A. baumannii is vulnerable to certain chemicals, especially tannic acid, after deleting baeR, which was confirmed using the spot assay. The wild-type strain of A. baumannii also exhibited 1.6-fold and 4.4-fold increase in gene expression of adeJ and macB in the medium with 100 μg/mL tannic acid, but the increase was fully inhibited by baeR deletion. An electrophoretic motility shift assay based on an interaction between His-BaeR and the adeA, adeI and macA promoter regions did not demonstrate direct binding. In conclusion, A. baumannii can use the TCS BaeSR in disposing chemicals, such as tannic acid and tigecycline, through regulating the efflux pumps. Public Library of Science 2015-07-10 /pmc/articles/PMC4498774/ /pubmed/26161744 http://dx.doi.org/10.1371/journal.pone.0132843 Text en © 2015 Lin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Ming-Feng Lin, Yun-You Lan, Chung-Yu The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii |
title | The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
|
title_full | The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
|
title_fullStr | The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
|
title_full_unstemmed | The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
|
title_short | The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii
|
title_sort | role of the two-component system baesr in disposing chemicals through regulating transporter systems in acinetobacter baumannii |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498774/ https://www.ncbi.nlm.nih.gov/pubmed/26161744 http://dx.doi.org/10.1371/journal.pone.0132843 |
work_keys_str_mv | AT linmingfeng theroleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii AT linyunyou theroleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii AT lanchungyu theroleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii AT linmingfeng roleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii AT linyunyou roleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii AT lanchungyu roleofthetwocomponentsystembaesrindisposingchemicalsthroughregulatingtransportersystemsinacinetobacterbaumannii |