Cargando…

The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mascotti, Maria Laura, Lapadula, Walter Jesús, Juri Ayub, Maximiliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498894/
https://www.ncbi.nlm.nih.gov/pubmed/26161776
http://dx.doi.org/10.1371/journal.pone.0132689
Descripción
Sumario:The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.