Cargando…
Direct Sensing of 5-Methylcytosine by Polymerase Chain Reaction**
The epigenetic control of genes by the methylation of cytosine resulting in 5-methylcytosine (5mC) has fundamental implications for human development and disease. Analysis of alterations in DNA methylation patterns is an emerging tool for cancer diagnostics and prognostics. Here we report that two t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499253/ https://www.ncbi.nlm.nih.gov/pubmed/24923910 http://dx.doi.org/10.1002/anie.201403745 |
Sumario: | The epigenetic control of genes by the methylation of cytosine resulting in 5-methylcytosine (5mC) has fundamental implications for human development and disease. Analysis of alterations in DNA methylation patterns is an emerging tool for cancer diagnostics and prognostics. Here we report that two thermostable DNA polymerases, namely the DNA polymerase KlenTaq derived from Thermus aquaticus and the KOD DNA polymerase from Thermococcus kodakaraensis, are able to extend 3′-mismatched primer strands more efficiently from 5 mC than from unmethylated C. This feature was advanced by generating a DNA polymerase mutant with further improved 5mC/C discrimination properties and its successful application in a novel methylation-specific PCR approach directly from untreated human genomic DNA. |
---|