Cargando…
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse...
Autores principales: | Sun, Xiao, Zhang, Tongda, Chai, Yueting, Liu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499454/ https://www.ncbi.nlm.nih.gov/pubmed/26221133 http://dx.doi.org/10.1155/2015/829201 |
Ejemplares similares
-
Authority or Autonomy? Exploring Interactions between Central and Peer Punishments in Risk-Resistant Scenarios
por: Qian, Jun, et al.
Publicado: (2022) -
The coordination of collective and individual solutions in risk-resistant scenarios
por: Qian, Jun, et al.
Publicado: (2023) -
Intelligent algorithms in ambient and biomedical computing
por: Verhaegh, Wim, et al.
Publicado: (2006) -
Personal computer wallpaper user segmentation based on Sasang typology
por: Lee, Joung-Youn
Publicado: (2015) -
Segmentation and separation of overlapped latent fingerprints: algorithms, techniques, and datasets
por: Stojanović, Branka, et al.
Publicado: (2019)