Cargando…
Self-generated morphology in lagoon reefs
The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decod...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499466/ https://www.ncbi.nlm.nih.gov/pubmed/26175962 http://dx.doi.org/10.7717/peerj.935 |
_version_ | 1782380792850153472 |
---|---|
author | Blakeway, David Hamblin, Michael G. |
author_facet | Blakeway, David Hamblin, Michael G. |
author_sort | Blakeway, David |
collection | PubMed |
description | The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. |
format | Online Article Text |
id | pubmed-4499466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-44994662015-07-14 Self-generated morphology in lagoon reefs Blakeway, David Hamblin, Michael G. PeerJ Computational Biology The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PeerJ Inc. 2015-05-12 /pmc/articles/PMC4499466/ /pubmed/26175962 http://dx.doi.org/10.7717/peerj.935 Text en © 2015 Blakeway and Hamblin http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Computational Biology Blakeway, David Hamblin, Michael G. Self-generated morphology in lagoon reefs |
title | Self-generated morphology in lagoon reefs |
title_full | Self-generated morphology in lagoon reefs |
title_fullStr | Self-generated morphology in lagoon reefs |
title_full_unstemmed | Self-generated morphology in lagoon reefs |
title_short | Self-generated morphology in lagoon reefs |
title_sort | self-generated morphology in lagoon reefs |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499466/ https://www.ncbi.nlm.nih.gov/pubmed/26175962 http://dx.doi.org/10.7717/peerj.935 |
work_keys_str_mv | AT blakewaydavid selfgeneratedmorphologyinlagoonreefs AT hamblinmichaelg selfgeneratedmorphologyinlagoonreefs |