Cargando…
Event-based text mining for biology and functional genomics
The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature prov...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499874/ https://www.ncbi.nlm.nih.gov/pubmed/24907365 http://dx.doi.org/10.1093/bfgp/elu015 |
_version_ | 1782380846179680256 |
---|---|
author | Ananiadou, Sophia Thompson, Paul Nawaz, Raheel McNaught, John Kell, Douglas B. |
author_facet | Ananiadou, Sophia Thompson, Paul Nawaz, Raheel McNaught, John Kell, Douglas B. |
author_sort | Ananiadou, Sophia |
collection | PubMed |
description | The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. |
format | Online Article Text |
id | pubmed-4499874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44998742015-07-15 Event-based text mining for biology and functional genomics Ananiadou, Sophia Thompson, Paul Nawaz, Raheel McNaught, John Kell, Douglas B. Brief Funct Genomics Papers The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. Oxford University Press 2015-05 2014-06-06 /pmc/articles/PMC4499874/ /pubmed/24907365 http://dx.doi.org/10.1093/bfgp/elu015 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Papers Ananiadou, Sophia Thompson, Paul Nawaz, Raheel McNaught, John Kell, Douglas B. Event-based text mining for biology and functional genomics |
title | Event-based text mining for biology and functional genomics |
title_full | Event-based text mining for biology and functional genomics |
title_fullStr | Event-based text mining for biology and functional genomics |
title_full_unstemmed | Event-based text mining for biology and functional genomics |
title_short | Event-based text mining for biology and functional genomics |
title_sort | event-based text mining for biology and functional genomics |
topic | Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499874/ https://www.ncbi.nlm.nih.gov/pubmed/24907365 http://dx.doi.org/10.1093/bfgp/elu015 |
work_keys_str_mv | AT ananiadousophia eventbasedtextminingforbiologyandfunctionalgenomics AT thompsonpaul eventbasedtextminingforbiologyandfunctionalgenomics AT nawazraheel eventbasedtextminingforbiologyandfunctionalgenomics AT mcnaughtjohn eventbasedtextminingforbiologyandfunctionalgenomics AT kelldouglasb eventbasedtextminingforbiologyandfunctionalgenomics |