Cargando…

Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates

BACKGROUND: Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Maio, Alessandro, Setar, Leah, Tiozzo, Stefano, De Tomaso, Anthony W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499891/
https://www.ncbi.nlm.nih.gov/pubmed/26171140
http://dx.doi.org/10.1186/s13227-015-0009-3
Descripción
Sumario:BACKGROUND: Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. RESULTS: In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. CONCLUSIONS: Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13227-015-0009-3) contains supplementary material, which is available to authorized users.