Cargando…
Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
[Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecon...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500454/ https://www.ncbi.nlm.nih.gov/pubmed/26191119 http://dx.doi.org/10.1021/acs.jpcc.5b02405 |
_version_ | 1782380916522352640 |
---|---|
author | Tavares, Luciana Cadelano, Michele Quochi, Francesco Simbrunner, Clemens Schwabegger, Günther Saba, Michele Mura, Andrea Bongiovanni, Giovanni Filho, Demétrio Antônio da Silva da Cunha, Wiliam Ferreira Rubahn, Horst-Günter Kjelstrup-Hansen, Jakob |
author_facet | Tavares, Luciana Cadelano, Michele Quochi, Francesco Simbrunner, Clemens Schwabegger, Günther Saba, Michele Mura, Andrea Bongiovanni, Giovanni Filho, Demétrio Antônio da Silva da Cunha, Wiliam Ferreira Rubahn, Horst-Günter Kjelstrup-Hansen, Jakob |
author_sort | Tavares, Luciana |
collection | PubMed |
description | [Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. |
format | Online Article Text |
id | pubmed-4500454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-45004542015-07-16 Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers Tavares, Luciana Cadelano, Michele Quochi, Francesco Simbrunner, Clemens Schwabegger, Günther Saba, Michele Mura, Andrea Bongiovanni, Giovanni Filho, Demétrio Antônio da Silva da Cunha, Wiliam Ferreira Rubahn, Horst-Günter Kjelstrup-Hansen, Jakob J Phys Chem C Nanomater Interfaces [Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. American Chemical Society 2015-06-15 2015-07-09 /pmc/articles/PMC4500454/ /pubmed/26191119 http://dx.doi.org/10.1021/acs.jpcc.5b02405 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Tavares, Luciana Cadelano, Michele Quochi, Francesco Simbrunner, Clemens Schwabegger, Günther Saba, Michele Mura, Andrea Bongiovanni, Giovanni Filho, Demétrio Antônio da Silva da Cunha, Wiliam Ferreira Rubahn, Horst-Günter Kjelstrup-Hansen, Jakob Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers |
title | Efficient Exciton Diffusion and Resonance-Energy Transfer
in Multilayered Organic Epitaxial Nanofibers |
title_full | Efficient Exciton Diffusion and Resonance-Energy Transfer
in Multilayered Organic Epitaxial Nanofibers |
title_fullStr | Efficient Exciton Diffusion and Resonance-Energy Transfer
in Multilayered Organic Epitaxial Nanofibers |
title_full_unstemmed | Efficient Exciton Diffusion and Resonance-Energy Transfer
in Multilayered Organic Epitaxial Nanofibers |
title_short | Efficient Exciton Diffusion and Resonance-Energy Transfer
in Multilayered Organic Epitaxial Nanofibers |
title_sort | efficient exciton diffusion and resonance-energy transfer
in multilayered organic epitaxial nanofibers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500454/ https://www.ncbi.nlm.nih.gov/pubmed/26191119 http://dx.doi.org/10.1021/acs.jpcc.5b02405 |
work_keys_str_mv | AT tavaresluciana efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT cadelanomichele efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT quochifrancesco efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT simbrunnerclemens efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT schwabeggergunther efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT sabamichele efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT muraandrea efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT bongiovannigiovanni efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT filhodemetrioantoniodasilva efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT dacunhawiliamferreira efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT rubahnhorstgunter efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers AT kjelstruphansenjakob efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers |