Cargando…

Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers

[Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecon...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavares, Luciana, Cadelano, Michele, Quochi, Francesco, Simbrunner, Clemens, Schwabegger, Günther, Saba, Michele, Mura, Andrea, Bongiovanni, Giovanni, Filho, Demétrio Antônio da Silva, da Cunha, Wiliam Ferreira, Rubahn, Horst-Günter, Kjelstrup-Hansen, Jakob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500454/
https://www.ncbi.nlm.nih.gov/pubmed/26191119
http://dx.doi.org/10.1021/acs.jpcc.5b02405
_version_ 1782380916522352640
author Tavares, Luciana
Cadelano, Michele
Quochi, Francesco
Simbrunner, Clemens
Schwabegger, Günther
Saba, Michele
Mura, Andrea
Bongiovanni, Giovanni
Filho, Demétrio Antônio da Silva
da Cunha, Wiliam Ferreira
Rubahn, Horst-Günter
Kjelstrup-Hansen, Jakob
author_facet Tavares, Luciana
Cadelano, Michele
Quochi, Francesco
Simbrunner, Clemens
Schwabegger, Günther
Saba, Michele
Mura, Andrea
Bongiovanni, Giovanni
Filho, Demétrio Antônio da Silva
da Cunha, Wiliam Ferreira
Rubahn, Horst-Günter
Kjelstrup-Hansen, Jakob
author_sort Tavares, Luciana
collection PubMed
description [Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices.
format Online
Article
Text
id pubmed-4500454
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-45004542015-07-16 Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers Tavares, Luciana Cadelano, Michele Quochi, Francesco Simbrunner, Clemens Schwabegger, Günther Saba, Michele Mura, Andrea Bongiovanni, Giovanni Filho, Demétrio Antônio da Silva da Cunha, Wiliam Ferreira Rubahn, Horst-Günter Kjelstrup-Hansen, Jakob J Phys Chem C Nanomater Interfaces [Image: see text] Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. American Chemical Society 2015-06-15 2015-07-09 /pmc/articles/PMC4500454/ /pubmed/26191119 http://dx.doi.org/10.1021/acs.jpcc.5b02405 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Tavares, Luciana
Cadelano, Michele
Quochi, Francesco
Simbrunner, Clemens
Schwabegger, Günther
Saba, Michele
Mura, Andrea
Bongiovanni, Giovanni
Filho, Demétrio Antônio da Silva
da Cunha, Wiliam Ferreira
Rubahn, Horst-Günter
Kjelstrup-Hansen, Jakob
Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title_full Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title_fullStr Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title_full_unstemmed Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title_short Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers
title_sort efficient exciton diffusion and resonance-energy transfer in multilayered organic epitaxial nanofibers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500454/
https://www.ncbi.nlm.nih.gov/pubmed/26191119
http://dx.doi.org/10.1021/acs.jpcc.5b02405
work_keys_str_mv AT tavaresluciana efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT cadelanomichele efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT quochifrancesco efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT simbrunnerclemens efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT schwabeggergunther efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT sabamichele efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT muraandrea efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT bongiovannigiovanni efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT filhodemetrioantoniodasilva efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT dacunhawiliamferreira efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT rubahnhorstgunter efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers
AT kjelstruphansenjakob efficientexcitondiffusionandresonanceenergytransferinmultilayeredorganicepitaxialnanofibers