Cargando…

Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice

Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pom...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Su-Jung, Jung, Un Ju, Kim, Hye-Jin, Ryu, Ri, Ryoo, Jae Young, Moon, Byoung Seok, Choi, Myung-Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Food Science and Nutrition 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500522/
https://www.ncbi.nlm.nih.gov/pubmed/26175996
http://dx.doi.org/10.3746/pnf.2015.20.2.94
Descripción
Sumario:Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic β-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic β-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.