Cargando…
The mean–variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI
When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections tha...
Autores principales: | Thompson, William H., Fransson, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500903/ https://www.ncbi.nlm.nih.gov/pubmed/26236216 http://dx.doi.org/10.3389/fnhum.2015.00398 |
Ejemplares similares
-
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Arousal Contributions to Resting-State fMRI Connectivity and Dynamics
por: Gu, Yameng, et al.
Publicado: (2019) -
Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems
por: Smith, Jason F., et al.
Publicado: (2012) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Simulations to benchmark time-varying connectivity methods for fMRI
por: Thompson, William Hedley, et al.
Publicado: (2018)