Cargando…
Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change
Multicenter longitudinal neuroimaging has great potential to provide efficient and consistent biomarkers for research of neurodegenerative diseases and aging. In rare disease studies it is of primary importance to have a reliable tool that performs consistently for data from many different collectio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500912/ https://www.ncbi.nlm.nih.gov/pubmed/26236182 http://dx.doi.org/10.3389/fnins.2015.00242 |
_version_ | 1782380977282088960 |
---|---|
author | Kim, Regina E. Y. Lourens, Spencer Long, Jeffrey D. Paulsen, Jane S. Johnson, Hans J. |
author_facet | Kim, Regina E. Y. Lourens, Spencer Long, Jeffrey D. Paulsen, Jane S. Johnson, Hans J. |
author_sort | Kim, Regina E. Y. |
collection | PubMed |
description | Multicenter longitudinal neuroimaging has great potential to provide efficient and consistent biomarkers for research of neurodegenerative diseases and aging. In rare disease studies it is of primary importance to have a reliable tool that performs consistently for data from many different collection sites to increase study power. A multi-atlas labeling algorithm is a powerful brain image segmentation approach that is becoming increasingly popular in image processing. The present study examined the performance of multi-atlas labeling tools for subcortical identification using two types of in-vivo image database: Traveling Human Phantom (THP) and PREDICT-HD. We compared the accuracy (Dice Similarity Coefficient; DSC and intraclass correlation; ICC), multicenter reliability (Coefficient of Variance; CV), and longitudinal reliability (volume trajectory smoothness and Akaike Information Criterion; AIC) of three automated segmentation approaches: two multi-atlas labeling tools, MABMIS and MALF, and a machine-learning-based tool, BRAINSCut. In general, MALF showed the best performance (higher DSC, ICC, lower CV, AIC, and smoother trajectory) with a couple of exceptions. First, the results of accumben, where BRAINSCut showed higher reliability, were still premature to discuss their reliability levels since their validity is still in doubt (DSC < 0.7, ICC < 0.7). For caudate, BRAINSCut presented slightly better accuracy while MALF showed significantly smoother longitudinal trajectory. We discuss advantages and limitations of these performance variations and conclude that improved segmentation quality can be achieved using multi-atlas labeling methods. While multi-atlas labeling methods are likely to help improve overall segmentation quality, caution has to be taken when one chooses an approach, as our results suggest that segmentation outcome can vary depending on research interest. |
format | Online Article Text |
id | pubmed-4500912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45009122015-07-31 Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change Kim, Regina E. Y. Lourens, Spencer Long, Jeffrey D. Paulsen, Jane S. Johnson, Hans J. Front Neurosci Neuroscience Multicenter longitudinal neuroimaging has great potential to provide efficient and consistent biomarkers for research of neurodegenerative diseases and aging. In rare disease studies it is of primary importance to have a reliable tool that performs consistently for data from many different collection sites to increase study power. A multi-atlas labeling algorithm is a powerful brain image segmentation approach that is becoming increasingly popular in image processing. The present study examined the performance of multi-atlas labeling tools for subcortical identification using two types of in-vivo image database: Traveling Human Phantom (THP) and PREDICT-HD. We compared the accuracy (Dice Similarity Coefficient; DSC and intraclass correlation; ICC), multicenter reliability (Coefficient of Variance; CV), and longitudinal reliability (volume trajectory smoothness and Akaike Information Criterion; AIC) of three automated segmentation approaches: two multi-atlas labeling tools, MABMIS and MALF, and a machine-learning-based tool, BRAINSCut. In general, MALF showed the best performance (higher DSC, ICC, lower CV, AIC, and smoother trajectory) with a couple of exceptions. First, the results of accumben, where BRAINSCut showed higher reliability, were still premature to discuss their reliability levels since their validity is still in doubt (DSC < 0.7, ICC < 0.7). For caudate, BRAINSCut presented slightly better accuracy while MALF showed significantly smoother longitudinal trajectory. We discuss advantages and limitations of these performance variations and conclude that improved segmentation quality can be achieved using multi-atlas labeling methods. While multi-atlas labeling methods are likely to help improve overall segmentation quality, caution has to be taken when one chooses an approach, as our results suggest that segmentation outcome can vary depending on research interest. Frontiers Media S.A. 2015-07-14 /pmc/articles/PMC4500912/ /pubmed/26236182 http://dx.doi.org/10.3389/fnins.2015.00242 Text en Copyright © 2015 Kim, Lourens, Long, Paulsen and Johnson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Kim, Regina E. Y. Lourens, Spencer Long, Jeffrey D. Paulsen, Jane S. Johnson, Hans J. Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title | Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title_full | Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title_fullStr | Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title_full_unstemmed | Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title_short | Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
title_sort | preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500912/ https://www.ncbi.nlm.nih.gov/pubmed/26236182 http://dx.doi.org/10.3389/fnins.2015.00242 |
work_keys_str_mv | AT kimreginaey preliminaryanalysisusingmultiatlaslabelingalgorithmsfortracinglongitudinalchange AT lourensspencer preliminaryanalysisusingmultiatlaslabelingalgorithmsfortracinglongitudinalchange AT longjeffreyd preliminaryanalysisusingmultiatlaslabelingalgorithmsfortracinglongitudinalchange AT paulsenjanes preliminaryanalysisusingmultiatlaslabelingalgorithmsfortracinglongitudinalchange AT johnsonhansj preliminaryanalysisusingmultiatlaslabelingalgorithmsfortracinglongitudinalchange |