Cargando…
Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing
AIM: To perform a blind study to assess the capability of the Ion Personal Genome Machine™ (PGM) system to sequence forensically relevant genetic marker panels and to characterize unknown individuals for ancestry and possible relatedness. METHODS: Twelve genomic samples were provided by a third part...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Croatian Medical Schools
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500968/ https://www.ncbi.nlm.nih.gov/pubmed/26088846 http://dx.doi.org/10.3325/cmj.2015.56.218 |
_version_ | 1782380987452227584 |
---|---|
author | Churchill, Jennifer D. Chang, Joseph Ge, Jianye Rajagopalan, Narasimhan Wootton, Sharon C. Chang, Chien-Wei Lagacé, Robert Liao, Wenchi King, Jonathan L. Budowle, Bruce |
author_facet | Churchill, Jennifer D. Chang, Joseph Ge, Jianye Rajagopalan, Narasimhan Wootton, Sharon C. Chang, Chien-Wei Lagacé, Robert Liao, Wenchi King, Jonathan L. Budowle, Bruce |
author_sort | Churchill, Jennifer D. |
collection | PubMed |
description | AIM: To perform a blind study to assess the capability of the Ion Personal Genome Machine™ (PGM) system to sequence forensically relevant genetic marker panels and to characterize unknown individuals for ancestry and possible relatedness. METHODS: Twelve genomic samples were provided by a third party for blinded genetic analysis. For these 12 samples, the mitochondrial genome and three PGM™ panels containing human identity single nucleotide polymorphisms (SNPs), ancestry informative SNPs, and short tandem repeats (STRs) were sequenced on the PGM™ system and analyzed. RESULTS: All four genetic systems were run and analyzed on the PGM™ system in a reasonably quick time frame. Completeness of genetic profiles, depth of coverage, strand balance, and allele balance were informative metrics that illustrated the quality and reliability of the data produced. SNP genotypes allowed for identification of sex, paternal lineage, and population ancestry. STR genotypes were shown to be in complete concordance with genotypes generated by standard capillary electrophoresis-based technologies. Variants in the mitochondrial genome data provided information on population background and maternal relationships. CONCLUSION: All results from analysis of the 12 genomic samples were consistent with sample information provided by the sample providers at the end of the blinded study. The relatively easy identification of intra-STR allele SNPs offered the potential for increased discrimination power. The promising nature of these results warrants full validation studies of this massively parallel sequencing technology and its further development for forensic data analysis. |
format | Online Article Text |
id | pubmed-4500968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Croatian Medical Schools |
record_format | MEDLINE/PubMed |
spelling | pubmed-45009682015-07-16 Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing Churchill, Jennifer D. Chang, Joseph Ge, Jianye Rajagopalan, Narasimhan Wootton, Sharon C. Chang, Chien-Wei Lagacé, Robert Liao, Wenchi King, Jonathan L. Budowle, Bruce Croat Med J Forensic Science AIM: To perform a blind study to assess the capability of the Ion Personal Genome Machine™ (PGM) system to sequence forensically relevant genetic marker panels and to characterize unknown individuals for ancestry and possible relatedness. METHODS: Twelve genomic samples were provided by a third party for blinded genetic analysis. For these 12 samples, the mitochondrial genome and three PGM™ panels containing human identity single nucleotide polymorphisms (SNPs), ancestry informative SNPs, and short tandem repeats (STRs) were sequenced on the PGM™ system and analyzed. RESULTS: All four genetic systems were run and analyzed on the PGM™ system in a reasonably quick time frame. Completeness of genetic profiles, depth of coverage, strand balance, and allele balance were informative metrics that illustrated the quality and reliability of the data produced. SNP genotypes allowed for identification of sex, paternal lineage, and population ancestry. STR genotypes were shown to be in complete concordance with genotypes generated by standard capillary electrophoresis-based technologies. Variants in the mitochondrial genome data provided information on population background and maternal relationships. CONCLUSION: All results from analysis of the 12 genomic samples were consistent with sample information provided by the sample providers at the end of the blinded study. The relatively easy identification of intra-STR allele SNPs offered the potential for increased discrimination power. The promising nature of these results warrants full validation studies of this massively parallel sequencing technology and its further development for forensic data analysis. Croatian Medical Schools 2015-06 /pmc/articles/PMC4500968/ /pubmed/26088846 http://dx.doi.org/10.3325/cmj.2015.56.218 Text en Copyright © 2015 by the Croatian Medical Journal. All rights reserved. http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Forensic Science Churchill, Jennifer D. Chang, Joseph Ge, Jianye Rajagopalan, Narasimhan Wootton, Sharon C. Chang, Chien-Wei Lagacé, Robert Liao, Wenchi King, Jonathan L. Budowle, Bruce Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title | Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title_full | Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title_fullStr | Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title_full_unstemmed | Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title_short | Blind study evaluation illustrates utility of the Ion PGM™ system for use in human identity DNA typing |
title_sort | blind study evaluation illustrates utility of the ion pgm™ system for use in human identity dna typing |
topic | Forensic Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500968/ https://www.ncbi.nlm.nih.gov/pubmed/26088846 http://dx.doi.org/10.3325/cmj.2015.56.218 |
work_keys_str_mv | AT churchilljenniferd blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT changjoseph blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT gejianye blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT rajagopalannarasimhan blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT woottonsharonc blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT changchienwei blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT lagacerobert blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT liaowenchi blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT kingjonathanl blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping AT budowlebruce blindstudyevaluationillustratesutilityoftheionpgmsystemforuseinhumanidentitydnatyping |