Cargando…

Optomechanically-induced transparency in parity-time-symmetric microresonators

Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Jing, H., Özdemir, Şahin K., Geng, Z., Zhang, Jing, Lü, Xin-You, Peng, Bo, Yang, Lan, Nori, Franco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500988/
https://www.ncbi.nlm.nih.gov/pubmed/26169253
http://dx.doi.org/10.1038/srep09663
Descripción
Sumario:Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices.