Cargando…
The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly
The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phospho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500991/ https://www.ncbi.nlm.nih.gov/pubmed/26236289 http://dx.doi.org/10.3389/fmicb.2015.00703 |
_version_ | 1782380992652115968 |
---|---|
author | Pepe-Ranney, Charles Hall, Edward K. |
author_facet | Pepe-Ranney, Charles Hall, Edward K. |
author_sort | Pepe-Ranney, Charles |
collection | PubMed |
description | The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. |
format | Online Article Text |
id | pubmed-4500991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45009912015-07-31 The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly Pepe-Ranney, Charles Hall, Edward K. Front Microbiol Microbiology The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. Frontiers Media S.A. 2015-07-14 /pmc/articles/PMC4500991/ /pubmed/26236289 http://dx.doi.org/10.3389/fmicb.2015.00703 Text en Copyright © 2015 Pepe-Ranney and Hall. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Pepe-Ranney, Charles Hall, Edward K. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title | The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title_full | The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title_fullStr | The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title_full_unstemmed | The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title_short | The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
title_sort | effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500991/ https://www.ncbi.nlm.nih.gov/pubmed/26236289 http://dx.doi.org/10.3389/fmicb.2015.00703 |
work_keys_str_mv | AT peperanneycharles theeffectofcarbonsubsidiesonmarineplanktonicnichepartitioningandrecruitmentduringbiofilmassembly AT halledwardk theeffectofcarbonsubsidiesonmarineplanktonicnichepartitioningandrecruitmentduringbiofilmassembly AT peperanneycharles effectofcarbonsubsidiesonmarineplanktonicnichepartitioningandrecruitmentduringbiofilmassembly AT halledwardk effectofcarbonsubsidiesonmarineplanktonicnichepartitioningandrecruitmentduringbiofilmassembly |