Cargando…
Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites
The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501334/ https://www.ncbi.nlm.nih.gov/pubmed/26175406 http://dx.doi.org/10.7554/eLife.06974 |
_version_ | 1782381052837232640 |
---|---|
author | Woo, Yong H Ansari, Hifzur Otto, Thomas D Klinger, Christen M Kolisko, Martin Michálek, Jan Saxena, Alka Shanmugam, Dhanasekaran Tayyrov, Annageldi Veluchamy, Alaguraj Ali, Shahjahan Bernal, Axel del Campo, Javier Cihlář, Jaromír Flegontov, Pavel Gornik, Sebastian G Hajdušková, Eva Horák, Aleš Janouškovec, Jan Katris, Nicholas J Mast, Fred D Miranda-Saavedra, Diego Mourier, Tobias Naeem, Raeece Nair, Mridul Panigrahi, Aswini K Rawlings, Neil D Padron-Regalado, Eriko Ramaprasad, Abhinay Samad, Nadira Tomčala, Aleš Wilkes, Jon Neafsey, Daniel E Doerig, Christian Bowler, Chris Keeling, Patrick J Roos, David S Dacks, Joel B Templeton, Thomas J Waller, Ross F Lukeš, Julius Oborník, Miroslav Pain, Arnab |
author_facet | Woo, Yong H Ansari, Hifzur Otto, Thomas D Klinger, Christen M Kolisko, Martin Michálek, Jan Saxena, Alka Shanmugam, Dhanasekaran Tayyrov, Annageldi Veluchamy, Alaguraj Ali, Shahjahan Bernal, Axel del Campo, Javier Cihlář, Jaromír Flegontov, Pavel Gornik, Sebastian G Hajdušková, Eva Horák, Aleš Janouškovec, Jan Katris, Nicholas J Mast, Fred D Miranda-Saavedra, Diego Mourier, Tobias Naeem, Raeece Nair, Mridul Panigrahi, Aswini K Rawlings, Neil D Padron-Regalado, Eriko Ramaprasad, Abhinay Samad, Nadira Tomčala, Aleš Wilkes, Jon Neafsey, Daniel E Doerig, Christian Bowler, Chris Keeling, Patrick J Roos, David S Dacks, Joel B Templeton, Thomas J Waller, Ross F Lukeš, Julius Oborník, Miroslav Pain, Arnab |
author_sort | Woo, Yong H |
collection | PubMed |
description | The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001 |
format | Online Article Text |
id | pubmed-4501334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-45013342015-07-16 Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Woo, Yong H Ansari, Hifzur Otto, Thomas D Klinger, Christen M Kolisko, Martin Michálek, Jan Saxena, Alka Shanmugam, Dhanasekaran Tayyrov, Annageldi Veluchamy, Alaguraj Ali, Shahjahan Bernal, Axel del Campo, Javier Cihlář, Jaromír Flegontov, Pavel Gornik, Sebastian G Hajdušková, Eva Horák, Aleš Janouškovec, Jan Katris, Nicholas J Mast, Fred D Miranda-Saavedra, Diego Mourier, Tobias Naeem, Raeece Nair, Mridul Panigrahi, Aswini K Rawlings, Neil D Padron-Regalado, Eriko Ramaprasad, Abhinay Samad, Nadira Tomčala, Aleš Wilkes, Jon Neafsey, Daniel E Doerig, Christian Bowler, Chris Keeling, Patrick J Roos, David S Dacks, Joel B Templeton, Thomas J Waller, Ross F Lukeš, Julius Oborník, Miroslav Pain, Arnab eLife Genomics and Evolutionary Biology The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001 eLife Sciences Publications, Ltd 2015-07-15 /pmc/articles/PMC4501334/ /pubmed/26175406 http://dx.doi.org/10.7554/eLife.06974 Text en © 2015, Woo et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Genomics and Evolutionary Biology Woo, Yong H Ansari, Hifzur Otto, Thomas D Klinger, Christen M Kolisko, Martin Michálek, Jan Saxena, Alka Shanmugam, Dhanasekaran Tayyrov, Annageldi Veluchamy, Alaguraj Ali, Shahjahan Bernal, Axel del Campo, Javier Cihlář, Jaromír Flegontov, Pavel Gornik, Sebastian G Hajdušková, Eva Horák, Aleš Janouškovec, Jan Katris, Nicholas J Mast, Fred D Miranda-Saavedra, Diego Mourier, Tobias Naeem, Raeece Nair, Mridul Panigrahi, Aswini K Rawlings, Neil D Padron-Regalado, Eriko Ramaprasad, Abhinay Samad, Nadira Tomčala, Aleš Wilkes, Jon Neafsey, Daniel E Doerig, Christian Bowler, Chris Keeling, Patrick J Roos, David S Dacks, Joel B Templeton, Thomas J Waller, Ross F Lukeš, Julius Oborník, Miroslav Pain, Arnab Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title_full | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title_fullStr | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title_full_unstemmed | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title_short | Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
title_sort | chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites |
topic | Genomics and Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501334/ https://www.ncbi.nlm.nih.gov/pubmed/26175406 http://dx.doi.org/10.7554/eLife.06974 |
work_keys_str_mv | AT wooyongh chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT ansarihifzur chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT ottothomasd chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT klingerchristenm chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT koliskomartin chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT michalekjan chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT saxenaalka chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT shanmugamdhanasekaran chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT tayyrovannageldi chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT veluchamyalaguraj chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT alishahjahan chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT bernalaxel chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT delcampojavier chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT cihlarjaromir chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT flegontovpavel chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT gorniksebastiang chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT hajduskovaeva chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT horakales chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT janouskovecjan chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT katrisnicholasj chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT mastfredd chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT mirandasaavedradiego chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT mouriertobias chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT naeemraeece chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT nairmridul chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT panigrahiaswinik chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT rawlingsneild chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT padronregaladoeriko chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT ramaprasadabhinay chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT samadnadira chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT tomcalaales chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT wilkesjon chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT neafseydaniele chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT doerigchristian chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT bowlerchris chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT keelingpatrickj chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT roosdavids chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT dacksjoelb chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT templetonthomasj chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT wallerrossf chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT lukesjulius chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT obornikmiroslav chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites AT painarnab chromeridgenomesrevealtheevolutionarypathfromphotosyntheticalgaetoobligateintracellularparasites |