Cargando…

Methods considerations for nystagmography

OBJECTIVES: 1. To assess the reproducibility of eye movement velocity measurement using two methods: traditional electro-oculography (EOG) and infrared video-oculography (VOG) and, 2. Determine whether the normal values for unilateral weakness and bilateral reduction of caloric responses vary accord...

Descripción completa

Detalles Bibliográficos
Autores principales: Blakley, Brian W., Chan, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501377/
https://www.ncbi.nlm.nih.gov/pubmed/26104786
http://dx.doi.org/10.1186/s40463-015-0078-2
Descripción
Sumario:OBJECTIVES: 1. To assess the reproducibility of eye movement velocity measurement using two methods: traditional electro-oculography (EOG) and infrared video-oculography (VOG) and, 2. Determine whether the normal values for unilateral weakness and bilateral reduction of caloric responses vary according to method employed. BACKGROUND: Vestibular testing frequently involves measurement of eye movements. EOG has been the standard method for decades, but VOG and other methods have recently become popular. The assumption has been that all methods measure eye movements equally and accurately but this assumption has not been validated. In this paper we examine this assumption. METHODS: Eye movements were recorded simultaneously with commercially available EOG and VOG methods to evaluate differences in results for nineteen normal subjects undergoing caloric tests with warm and cold water. Examination of the records permitted identification and simultaneous measurement of 840 nystagmus beats. RESULTS: EOG and VOG measurements were correlated but the correlation was not strong (Spearman rho = 0.529, p < 0.01). Eye velocities recorded by the VOG system were greater than that for the EOG system. The mean VOG/EOG ratio was 1.71. Normal values used at our centre were adjusted to accommodate the use of video technology to account for the differences in sensitivity between EOG and VOG methods. CONCLUSION: The traditional EOG-based normal value for bilateral reduction of caloric response, 30 degree per second (d/s) based on traditional EOG measurements should be revised to 50 d/s for modern VOG testing in our lab. Normal values for vestibular testing may need to be re-evaluated when new technology is introduced. Each lab should verify normal values for their own methods and equipment.