Cargando…
Molecular Evolution and Genetic Analysis of the Major Capsid Protein VP1 of Duck Hepatitis A Viruses: Implications for Antigenic Stability
The duck hepatitis A virus (DHAV), a member of the family Picornaviridae, is the major cause of outbreaks with high mortality rates in young ducklings. It has three distinctive serotypes and among them, serotypes 1 (DHAV-1) and 3 (DHAV-3) were recognized in China. To investigate evolutionary and ant...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501807/ https://www.ncbi.nlm.nih.gov/pubmed/26173145 http://dx.doi.org/10.1371/journal.pone.0132982 |
Sumario: | The duck hepatitis A virus (DHAV), a member of the family Picornaviridae, is the major cause of outbreaks with high mortality rates in young ducklings. It has three distinctive serotypes and among them, serotypes 1 (DHAV-1) and 3 (DHAV-3) were recognized in China. To investigate evolutionary and antigenic properties of the major capsid protein VP1 of these two serotypes, a primary target of neutralizing antibodies, we determined the VP1 coding sequences of 19 DHAV-1 (spanning 2000-2012) and 11 DHAV-3 isolates (spanning 2008-2014) associated with disease outbreaks. By bioinformatics analysis of VP1 sequences of these isolates and other DHAV strains reported previously, we demonstrated that DHAV-1 viruses evolved into two genetic lineages, while DHAV-3 viruses exhibited three distinct lineages. The rate of nucleotide substitution for DHAV-1 VP1 genes was estimated to be 5.57 x 10(-4) per site per year, which was about one-third times slower than that for DHAV-3 VP1 genes. The population dynamics analysis showed an upward trend for infection of DHAV-1 viruses over time with little change observed for DHAV-3 viruses. Antigenic study of representative DHAV-1 and DHAV-3 strains covering all observed major lineages revealed no detectable changes in viral neutralization properties within the serotype, despite the lack of cross-neutralization between serotypes 1 and 3 strains. Structural analysis identified VP1 mutations in DHAV-1 and DHAV-3 viruses that underpin the observed antigenic phenotypes. Results of our experiments described here shall give novel insights into evolution and antigenicity of duck picornaviruses. |
---|