Cargando…

Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions

BACKGROUND: Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis....

Descripción completa

Detalles Bibliográficos
Autores principales: Nerandzic, Michelle M., Sunkesula, Venkata C. K., C., Thriveen Sankar, Setlow, Peter, Donskey, Curtis J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503543/
https://www.ncbi.nlm.nih.gov/pubmed/26177038
http://dx.doi.org/10.1371/journal.pone.0132805
Descripción
Sumario:BACKGROUND: Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats. PRINCIPAL FINDINGS: Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores. CONCLUSIONS: These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions.