Cargando…
Overfitting Bayesian Mixture Models with an Unknown Number of Components
This paper proposes solutions to three issues pertaining to the estimation of finite mixture models with an unknown number of components: the non-identifiability induced by overfitting the number of components, the mixing limitations of standard Markov Chain Monte Carlo (MCMC) sampling techniques, a...
Autores principales: | van Havre, Zoé, White, Nicole, Rousseau, Judith, Mengersen, Kerrie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503697/ https://www.ncbi.nlm.nih.gov/pubmed/26177375 http://dx.doi.org/10.1371/journal.pone.0131739 |
Ejemplares similares
-
Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling
por: Gilholm, Patricia, et al.
Publicado: (2020) -
Bayesian spatiotemporal modelling for identifying unusual and unstable trends in mammography utilisation
por: Duncan, Earl W, et al.
Publicado: (2016) -
The overfitted brain hypothesis
por: Prince, Luke Y., et al.
Publicado: (2021) -
Spatial smoothing in Bayesian models: a comparison of weights matrix specifications and their impact on inference
por: Duncan, Earl W., et al.
Publicado: (2017) -
Hands-on training about overfitting
por: Demšar, Janez, et al.
Publicado: (2021)