Cargando…
Emergence of Slow-Switching Assemblies in Structured Neuronal Networks
Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate sl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503787/ https://www.ncbi.nlm.nih.gov/pubmed/26176664 http://dx.doi.org/10.1371/journal.pcbi.1004196 |
_version_ | 1782381363534495744 |
---|---|
author | Schaub, Michael T. Billeh, Yazan N. Anastassiou, Costas A. Koch, Christof Barahona, Mauricio |
author_facet | Schaub, Michael T. Billeh, Yazan N. Anastassiou, Costas A. Koch, Christof Barahona, Mauricio |
author_sort | Schaub, Michael T. |
collection | PubMed |
description | Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics. |
format | Online Article Text |
id | pubmed-4503787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45037872015-07-17 Emergence of Slow-Switching Assemblies in Structured Neuronal Networks Schaub, Michael T. Billeh, Yazan N. Anastassiou, Costas A. Koch, Christof Barahona, Mauricio PLoS Comput Biol Research Article Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics. Public Library of Science 2015-07-15 /pmc/articles/PMC4503787/ /pubmed/26176664 http://dx.doi.org/10.1371/journal.pcbi.1004196 Text en © 2015 Schaub et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Schaub, Michael T. Billeh, Yazan N. Anastassiou, Costas A. Koch, Christof Barahona, Mauricio Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title | Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title_full | Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title_fullStr | Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title_full_unstemmed | Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title_short | Emergence of Slow-Switching Assemblies in Structured Neuronal Networks |
title_sort | emergence of slow-switching assemblies in structured neuronal networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503787/ https://www.ncbi.nlm.nih.gov/pubmed/26176664 http://dx.doi.org/10.1371/journal.pcbi.1004196 |
work_keys_str_mv | AT schaubmichaelt emergenceofslowswitchingassembliesinstructuredneuronalnetworks AT billehyazann emergenceofslowswitchingassembliesinstructuredneuronalnetworks AT anastassioucostasa emergenceofslowswitchingassembliesinstructuredneuronalnetworks AT kochchristof emergenceofslowswitchingassembliesinstructuredneuronalnetworks AT barahonamauricio emergenceofslowswitchingassembliesinstructuredneuronalnetworks |