Cargando…
In Vitro Differentiation of Human Umbilical Cord Blood CD133(+)Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells
OBJECTIVE: Pancreatic stroma plays an important role in the induction of pancreatic cells by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective role in differentiation of umbilical...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503835/ https://www.ncbi.nlm.nih.gov/pubmed/26199900 |
Sumario: | OBJECTIVE: Pancreatic stroma plays an important role in the induction of pancreatic cells by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective role in differentiation of umbilical cord blood cluster of differentiation 133(+) (UCB-CD133(+)) cells into newly-formed β-cells in vitro. MATERIALS AND METHODS: This study is an experimental research. The UCB-CD133(+)cells were purified by magnetic activated cell sorting (MACS) and differentiated into insulin producing cells (IPCs) in co-culture, both directly and indirectly with rat PMCs. Immunocytochemistry and enzyme linked immune sorbent assay (ELISA) were used to determine expression and production of insulin and C-peptide at the protein level. RESULTS: Our results demonstrated that UCB-CD133(+)differentiated into IPCs. Cells in islet-like clusters with (out) co-cultured with rat pancreatic stromal cells produced insulin and C-peptide and released them into the culture medium at the end of the induction protocol. However they did not respond well to glucose challenges. CONCLUSION: Rat PMCs possibly affect differentiation of UCB-CD133(+)cells into IPCs by increasing the number of immature β-cells. |
---|