Cargando…
Application of Machine Learning to Development of Copy Number Variation-based Prediction of Cancer Risk
In the present study, recurrent copy number variations (CNVs) from non-tumor blood cell DNAs of Caucasian non-cancer subjects and glioma, myeloma, and colorectal cancer-patients, and Korean non-cancer subjects and hepatocellular carcinoma, gastric cancer, and colorectal cancer patients, were found t...
Autores principales: | Ding, Xiaofan, Tsang, Shui-Ying, Ng, Siu-Kin, Xue, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504076/ https://www.ncbi.nlm.nih.gov/pubmed/26203258 http://dx.doi.org/10.4137/GEI.S15002 |
Ejemplares similares
-
Copy number variation analysis based on AluScan sequences
por: Yang, Jian-Feng, et al.
Publicado: (2014) -
CNV-P: a machine-learning framework for predicting high confident copy number variations
por: Wang, Taifu, et al.
Publicado: (2021) -
A machine learning framework for genotyping the structural variations with copy number variant
por: Zheng, Tian, et al.
Publicado: (2020) -
Assessing the reproducibility of exome copy number variations predictions
por: Hong, Celine S., et al.
Publicado: (2016) -
Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning
por: Attique, Haleema, et al.
Publicado: (2022)