Cargando…
LogDet Rank Minimization with Application to Subspace Clustering
Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and thus the rank may not be well approximated in...
Autores principales: | Kang, Zhao, Peng, Chong, Cheng, Jie, Cheng, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504123/ https://www.ncbi.nlm.nih.gov/pubmed/26229527 http://dx.doi.org/10.1155/2015/824289 |
Ejemplares similares
-
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
por: Liu, Jian, et al.
Publicado: (2021) -
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence
por: Jiang, Hao, et al.
Publicado: (2017) -
Generalized gene co-expression analysis via subspace clustering using low-rank representation
por: Wang, Tongxin, et al.
Publicado: (2019) -
Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation
por: Cui, Yan, et al.
Publicado: (2013) -
Application of Subspace Clustering in DNA Sequence Analysis
por: Wallace, Tim, et al.
Publicado: (2015)