Cargando…

Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer

BACKGROUND: Fatty acid synthase (FASN) is crucial to de novo long-chain fatty acid synthesis, needed to meet cancer cells’ increased demands for membrane, energy, and protein production. METHODS: We investigated FASN overexpression as a therapeutic and chemosensitization target in ovarian cancer tis...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauerschlag, Dirk O, Maass, Nicolai, Leonhardt, Peter, Verburg, Frederik A, Pecks, Ulrich, Zeppernick, Felix, Morgenroth, Agnieszka, Mottaghy, Felix M, Tolba, Rene, Meinhold-Heerlein, Ivo, Bräutigam, Karen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504229/
https://www.ncbi.nlm.nih.gov/pubmed/25947066
http://dx.doi.org/10.1186/s12967-015-0511-3
Descripción
Sumario:BACKGROUND: Fatty acid synthase (FASN) is crucial to de novo long-chain fatty acid synthesis, needed to meet cancer cells’ increased demands for membrane, energy, and protein production. METHODS: We investigated FASN overexpression as a therapeutic and chemosensitization target in ovarian cancer tissue, cell lines, and primary cell cultures. FASN expression at mRNA and protein levels was determined by quantitative real-time polymerase chain reaction and immunoblotting and immunohistochemistry, respectively. FASN inhibition’s impact on cell viability, apoptosis, and fatty acid metabolism was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide assay, cell death detection enzyme-linked immunosorbent assay, immunoblotting, and (18) F-fluoromethylcholine uptake measurement, respectively. RESULTS: Relative to that in healthy fallopian tube tissue, tumor tissues had 1.8-fold average FASN protein overexpression; cell lines and primary cultures had 11-fold–100-fold mRNA and protein overexpression. In most samples, the FASN inhibitor cerulenin markedly decreased FASN expression and cell viability and induced apoptosis. Unlike concomitant administration, sequential cerulenin/cisplatin treatment reduced cisplatin’s half maximal inhibitory concentration profoundly (up to 54%) in a cisplatin-resistant cell line, suggesting platinum (re)sensitization. Cisplatin-resistant cells displayed lower (18) F-fluoro-methylcholine uptake than did cisplatin-sensitive cells, suggesting that metabolic imaging might help guide therapy. CONCLUSIONS: FASN inhibition induced apoptosis in chemosensitive and platinum-resistant ovarian cancer cells and may reverse cisplatin resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0511-3) contains supplementary material, which is available to authorized users.