Cargando…

Deafferented controllers: a fundamental failure mechanism in cortical neuroprosthetic systems

Brain-machine interface (BMI) research assumes that patients with disconnected neural pathways could naturally control a prosthetic device by volitionally modulating sensorimotor cortical activity usually responsible for movement coordination. However, computational approaches to motor control chall...

Descripción completa

Detalles Bibliográficos
Autores principales: Galán, Ferran, Baker, Stuart N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505102/
https://www.ncbi.nlm.nih.gov/pubmed/26236210
http://dx.doi.org/10.3389/fnbeh.2015.00186
Descripción
Sumario:Brain-machine interface (BMI) research assumes that patients with disconnected neural pathways could naturally control a prosthetic device by volitionally modulating sensorimotor cortical activity usually responsible for movement coordination. However, computational approaches to motor control challenge this view. This article examines the predictions of optimal feedback control (OFC) theory on the effects that loss of motor output and sensory feedback have on the normal generation of motor commands. Example simulations of unimpaired, totally disconnected, and deafferented controllers illustrate that by neglecting the dynamic interplay between motor commands, state estimation, feedback and behavior, current BMI systems face translational challenges rooted in a debatable assumption and experimental models of limited validity.