Cargando…
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehy...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505864/ https://www.ncbi.nlm.nih.gov/pubmed/26186595 http://dx.doi.org/10.1371/journal.pone.0132791 |
_version_ | 1782381598128209920 |
---|---|
author | Rasamiravaka, Tsiry Vandeputte, Olivier M. Pottier, Laurent Huet, Joelle Rabemanantsoa, Christian Kiendrebeogo, Martin Andriantsimahavandy, Abel Rasamindrakotroka, Andry Stévigny, Caroline Duez, Pierre El Jaziri, Mondher |
author_facet | Rasamiravaka, Tsiry Vandeputte, Olivier M. Pottier, Laurent Huet, Joelle Rabemanantsoa, Christian Kiendrebeogo, Martin Andriantsimahavandy, Abel Rasamindrakotroka, Andry Stévigny, Caroline Duez, Pierre El Jaziri, Mondher |
author_sort | Rasamiravaka, Tsiry |
collection | PubMed |
description | Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms. |
format | Online Article Text |
id | pubmed-4505864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45058642015-07-23 Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume Rasamiravaka, Tsiry Vandeputte, Olivier M. Pottier, Laurent Huet, Joelle Rabemanantsoa, Christian Kiendrebeogo, Martin Andriantsimahavandy, Abel Rasamindrakotroka, Andry Stévigny, Caroline Duez, Pierre El Jaziri, Mondher PLoS One Research Article Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms. Public Library of Science 2015-07-17 /pmc/articles/PMC4505864/ /pubmed/26186595 http://dx.doi.org/10.1371/journal.pone.0132791 Text en © 2015 Rasamiravaka et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rasamiravaka, Tsiry Vandeputte, Olivier M. Pottier, Laurent Huet, Joelle Rabemanantsoa, Christian Kiendrebeogo, Martin Andriantsimahavandy, Abel Rasamindrakotroka, Andry Stévigny, Caroline Duez, Pierre El Jaziri, Mondher Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title |
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title_full |
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title_fullStr |
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title_full_unstemmed |
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title_short |
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume |
title_sort | pseudomonas aeruginosa biofilm formation and persistence, along with the production of quorum sensing-dependent virulence factors, are disrupted by a triterpenoid coumarate ester isolated from dalbergia trichocarpa, a tropical legume |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505864/ https://www.ncbi.nlm.nih.gov/pubmed/26186595 http://dx.doi.org/10.1371/journal.pone.0132791 |
work_keys_str_mv | AT rasamiravakatsiry pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT vandeputteolivierm pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT pottierlaurent pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT huetjoelle pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT rabemanantsoachristian pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT kiendrebeogomartin pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT andriantsimahavandyabel pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT rasamindrakotrokaandry pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT stevignycaroline pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT duezpierre pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume AT eljazirimondher pseudomonasaeruginosabiofilmformationandpersistencealongwiththeproductionofquorumsensingdependentvirulencefactorsaredisruptedbyatriterpenoidcoumarateesterisolatedfromdalbergiatrichocarpaatropicallegume |