Cargando…
Synthesis and Characterization of 8-O-Carboxymethylpyranine (CM-Pyranine) as a Bright, Violet-Emitting, Fluid-Phase Fluorescent Marker in Cell Biology
To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505926/ https://www.ncbi.nlm.nih.gov/pubmed/26186650 http://dx.doi.org/10.1371/journal.pone.0133518 |
Sumario: | To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and 428.5 nm, respectively, are well suited for excitation by 405-nm diode lasers now commonly available on laser-scanning microscopes. High fluorescence quantum efficiency (Q = 0.96) and strong light absorption (ε(405) > 25,000 M(-1)cm(-1)) together make CM-pyranine the brightest violet aqueous tracer. The fluorescence spectrum of CM-pyranine is invariant above pH 4, which makes it a good fluid-phase marker in all cellular compartments. CM-pyranine is very photostable, is retained for long periods by cells, does not self-quench, and has negligible excimer emission. The sum of its properties make CM-pyranine an ideal fluorescent tracer. The use of CM-pyranine as a fluid-phase marker is demonstrated by multicolor confocal microscopy of cells that are also labeled with lipid and nuclear markers that have green and red fluorescence emission, respectively. |
---|