Cargando…

Synthesis and Characterization of 8-O-Carboxymethylpyranine (CM-Pyranine) as a Bright, Violet-Emitting, Fluid-Phase Fluorescent Marker in Cell Biology

To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and...

Descripción completa

Detalles Bibliográficos
Autores principales: Legenzov, Eric A., Dirda, Nathaniel D. A., Hagen, Brian M., Kao, Joseph P. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505926/
https://www.ncbi.nlm.nih.gov/pubmed/26186650
http://dx.doi.org/10.1371/journal.pone.0133518
Descripción
Sumario:To avoid spectral interference with common fluorophores in multicolor fluorescence microscopy, a fluid-phase tracer with excitation and emission in the violet end of the visible spectrum is desirable. CM-pyranine is easily synthesized and purified. Its excitation and emission maxima at 401.5 nm and 428.5 nm, respectively, are well suited for excitation by 405-nm diode lasers now commonly available on laser-scanning microscopes. High fluorescence quantum efficiency (Q = 0.96) and strong light absorption (ε(405) > 25,000 M(-1)cm(-1)) together make CM-pyranine the brightest violet aqueous tracer. The fluorescence spectrum of CM-pyranine is invariant above pH 4, which makes it a good fluid-phase marker in all cellular compartments. CM-pyranine is very photostable, is retained for long periods by cells, does not self-quench, and has negligible excimer emission. The sum of its properties make CM-pyranine an ideal fluorescent tracer. The use of CM-pyranine as a fluid-phase marker is demonstrated by multicolor confocal microscopy of cells that are also labeled with lipid and nuclear markers that have green and red fluorescence emission, respectively.