Cargando…

Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)

Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivar...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Yanhong, Hu, Longxing, Chen, Liang, Sun, Xiaoyan, Yang, Yong, Liu, Hongmei, Xu, Qingguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505963/
https://www.ncbi.nlm.nih.gov/pubmed/26186338
http://dx.doi.org/10.1371/journal.pone.0133054
_version_ 1782381614138916864
author Lou, Yanhong
Hu, Longxing
Chen, Liang
Sun, Xiaoyan
Yang, Yong
Liu, Hongmei
Xu, Qingguo
author_facet Lou, Yanhong
Hu, Longxing
Chen, Liang
Sun, Xiaoyan
Yang, Yong
Liu, Hongmei
Xu, Qingguo
author_sort Lou, Yanhong
collection PubMed
description Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia), were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR) markers. The panel displayed significant variation in spike count per plant (SCP) and spike weight (SW). However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K) was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single-associated markers were associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue.
format Online
Article
Text
id pubmed-4505963
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45059632015-07-23 Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.) Lou, Yanhong Hu, Longxing Chen, Liang Sun, Xiaoyan Yang, Yong Liu, Hongmei Xu, Qingguo PLoS One Research Article Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia), were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR) markers. The panel displayed significant variation in spike count per plant (SCP) and spike weight (SW). However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K) was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single-associated markers were associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue. Public Library of Science 2015-07-17 /pmc/articles/PMC4505963/ /pubmed/26186338 http://dx.doi.org/10.1371/journal.pone.0133054 Text en © 2015 Lou et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lou, Yanhong
Hu, Longxing
Chen, Liang
Sun, Xiaoyan
Yang, Yong
Liu, Hongmei
Xu, Qingguo
Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title_full Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title_fullStr Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title_full_unstemmed Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title_short Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)
title_sort association analysis of simple sequence repeat (ssr) markers with agronomic traits in tall fescue (festuca arundinacea schreb.)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4505963/
https://www.ncbi.nlm.nih.gov/pubmed/26186338
http://dx.doi.org/10.1371/journal.pone.0133054
work_keys_str_mv AT louyanhong associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT hulongxing associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT chenliang associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT sunxiaoyan associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT yangyong associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT liuhongmei associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb
AT xuqingguo associationanalysisofsimplesequencerepeatssrmarkerswithagronomictraitsintallfescuefestucaarundinaceaschreb