Cargando…
Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells
Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506362/ https://www.ncbi.nlm.nih.gov/pubmed/26244166 |
_version_ | 1782381667994828800 |
---|---|
author | Ganguly, Anutosh Cabral, Fernando Yang, Hailing Patel, Kamala D. |
author_facet | Ganguly, Anutosh Cabral, Fernando Yang, Hailing Patel, Kamala D. |
author_sort | Ganguly, Anutosh |
collection | PubMed |
description | Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety. |
format | Online Article Text |
id | pubmed-4506362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-45063622015-08-04 Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells Ganguly, Anutosh Cabral, Fernando Yang, Hailing Patel, Kamala D. Oncoscience Research Paper Peloruside A is a novel antimitotic drug originally isolated from the marine sponge Mycale hentschieli. Previous studies showed that peloruside A stabilizes microtubules by binding to a site on tubulin distinct from paclitaxel, another microtubule stabilizing drug. Peloruside A blocks mitosis, but little is known about the effects on other cellular activities. Here we report that peloruside A is the most potent microtubule inhibitor yet tested for its ability to block endothelial cell migration. Quantitative analysis indicated that it inhibits microtubule dynamics and endothelial cell migration at 1/200(th) of the concentration needed to inhibit cell division (the cytotoxic concentration), indicating that it could potentially have a large margin of safety when used to specifically target angiogenesis. By comparison, paclitaxel, a well-known cancer therapeutic drug, suppresses cell migration at 1/13(th) of its cytotoxic concentration; and vinblastine suppresses cell migration at just slightly below its cytotoxic antimitotic concentration. Thus, different microtubule targeted drugs have varying relative potencies for inhibition of cell migration versus cell division. The results suggest that peloruside A may be an especially useful agent for anti-angiogenesis therapy and point to the likelihood that other antimitotic drugs might be found with an even larger potential margin of safety. Impact Journals LLC 2015-06-12 /pmc/articles/PMC4506362/ /pubmed/26244166 Text en Copyright: © 2015 Ganguly et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Ganguly, Anutosh Cabral, Fernando Yang, Hailing Patel, Kamala D. Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title | Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title_full | Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title_fullStr | Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title_full_unstemmed | Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title_short | Peloruside A is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
title_sort | peloruside a is a microtubule-stabilizing agent with exceptional anti-migratory properties in human endothelial cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506362/ https://www.ncbi.nlm.nih.gov/pubmed/26244166 |
work_keys_str_mv | AT gangulyanutosh pelorusideaisamicrotubulestabilizingagentwithexceptionalantimigratorypropertiesinhumanendothelialcells AT cabralfernando pelorusideaisamicrotubulestabilizingagentwithexceptionalantimigratorypropertiesinhumanendothelialcells AT yanghailing pelorusideaisamicrotubulestabilizingagentwithexceptionalantimigratorypropertiesinhumanendothelialcells AT patelkamalad pelorusideaisamicrotubulestabilizingagentwithexceptionalantimigratorypropertiesinhumanendothelialcells |