Cargando…
Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
BACKGROUND: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the perfor...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506430/ https://www.ncbi.nlm.nih.gov/pubmed/26109056 http://dx.doi.org/10.1186/s13059-015-0694-1 |
_version_ | 1782381683499073536 |
---|---|
author | Zhang, Wenqian Yu, Ying Hertwig, Falk Thierry-Mieg, Jean Zhang, Wenwei Thierry-Mieg, Danielle Wang, Jian Furlanello, Cesare Devanarayan, Viswanath Cheng, Jie Deng, Youping Hero, Barbara Hong, Huixiao Jia, Meiwen Li, Li Lin, Simon M Nikolsky, Yuri Oberthuer, André Qing, Tao Su, Zhenqiang Volland, Ruth Wang, Charles Wang, May D. Ai, Junmei Albanese, Davide Asgharzadeh, Shahab Avigad, Smadar Bao, Wenjun Bessarabova, Marina Brilliant, Murray H. Brors, Benedikt Chierici, Marco Chu, Tzu-Ming Zhang, Jibin Grundy, Richard G. He, Min Max Hebbring, Scott Kaufman, Howard L. Lababidi, Samir Lancashire, Lee J. Li, Yan Lu, Xin X. Luo, Heng Ma, Xiwen Ning, Baitang Noguera, Rosa Peifer, Martin Phan, John H. Roels, Frederik Rosswog, Carolina Shao, Susan Shen, Jie Theissen, Jessica Tonini, Gian Paolo Vandesompele, Jo Wu, Po-Yen Xiao, Wenzhong Xu, Joshua Xu, Weihong Xuan, Jiekun Yang, Yong Ye, Zhan Dong, Zirui Zhang, Ke K. Yin, Ye Zhao, Chen Zheng, Yuanting Wolfinger, Russell D. Shi, Tieliu Malkas, Linda H. Berthold, Frank Wang, Jun Tong, Weida Shi, Leming Peng, Zhiyu Fischer, Matthias |
author_facet | Zhang, Wenqian Yu, Ying Hertwig, Falk Thierry-Mieg, Jean Zhang, Wenwei Thierry-Mieg, Danielle Wang, Jian Furlanello, Cesare Devanarayan, Viswanath Cheng, Jie Deng, Youping Hero, Barbara Hong, Huixiao Jia, Meiwen Li, Li Lin, Simon M Nikolsky, Yuri Oberthuer, André Qing, Tao Su, Zhenqiang Volland, Ruth Wang, Charles Wang, May D. Ai, Junmei Albanese, Davide Asgharzadeh, Shahab Avigad, Smadar Bao, Wenjun Bessarabova, Marina Brilliant, Murray H. Brors, Benedikt Chierici, Marco Chu, Tzu-Ming Zhang, Jibin Grundy, Richard G. He, Min Max Hebbring, Scott Kaufman, Howard L. Lababidi, Samir Lancashire, Lee J. Li, Yan Lu, Xin X. Luo, Heng Ma, Xiwen Ning, Baitang Noguera, Rosa Peifer, Martin Phan, John H. Roels, Frederik Rosswog, Carolina Shao, Susan Shen, Jie Theissen, Jessica Tonini, Gian Paolo Vandesompele, Jo Wu, Po-Yen Xiao, Wenzhong Xu, Joshua Xu, Weihong Xuan, Jiekun Yang, Yong Ye, Zhan Dong, Zirui Zhang, Ke K. Yin, Ye Zhao, Chen Zheng, Yuanting Wolfinger, Russell D. Shi, Tieliu Malkas, Linda H. Berthold, Frank Wang, Jun Tong, Weida Shi, Leming Peng, Zhiyu Fischer, Matthias |
author_sort | Zhang, Wenqian |
collection | PubMed |
description | BACKGROUND: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. RESULTS: We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. CONCLUSIONS: We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0694-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4506430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45064302015-07-19 Comparison of RNA-seq and microarray-based models for clinical endpoint prediction Zhang, Wenqian Yu, Ying Hertwig, Falk Thierry-Mieg, Jean Zhang, Wenwei Thierry-Mieg, Danielle Wang, Jian Furlanello, Cesare Devanarayan, Viswanath Cheng, Jie Deng, Youping Hero, Barbara Hong, Huixiao Jia, Meiwen Li, Li Lin, Simon M Nikolsky, Yuri Oberthuer, André Qing, Tao Su, Zhenqiang Volland, Ruth Wang, Charles Wang, May D. Ai, Junmei Albanese, Davide Asgharzadeh, Shahab Avigad, Smadar Bao, Wenjun Bessarabova, Marina Brilliant, Murray H. Brors, Benedikt Chierici, Marco Chu, Tzu-Ming Zhang, Jibin Grundy, Richard G. He, Min Max Hebbring, Scott Kaufman, Howard L. Lababidi, Samir Lancashire, Lee J. Li, Yan Lu, Xin X. Luo, Heng Ma, Xiwen Ning, Baitang Noguera, Rosa Peifer, Martin Phan, John H. Roels, Frederik Rosswog, Carolina Shao, Susan Shen, Jie Theissen, Jessica Tonini, Gian Paolo Vandesompele, Jo Wu, Po-Yen Xiao, Wenzhong Xu, Joshua Xu, Weihong Xuan, Jiekun Yang, Yong Ye, Zhan Dong, Zirui Zhang, Ke K. Yin, Ye Zhao, Chen Zheng, Yuanting Wolfinger, Russell D. Shi, Tieliu Malkas, Linda H. Berthold, Frank Wang, Jun Tong, Weida Shi, Leming Peng, Zhiyu Fischer, Matthias Genome Biol Research BACKGROUND: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. RESULTS: We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. CONCLUSIONS: We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0694-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-06-25 2015 /pmc/articles/PMC4506430/ /pubmed/26109056 http://dx.doi.org/10.1186/s13059-015-0694-1 Text en © Zhang et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zhang, Wenqian Yu, Ying Hertwig, Falk Thierry-Mieg, Jean Zhang, Wenwei Thierry-Mieg, Danielle Wang, Jian Furlanello, Cesare Devanarayan, Viswanath Cheng, Jie Deng, Youping Hero, Barbara Hong, Huixiao Jia, Meiwen Li, Li Lin, Simon M Nikolsky, Yuri Oberthuer, André Qing, Tao Su, Zhenqiang Volland, Ruth Wang, Charles Wang, May D. Ai, Junmei Albanese, Davide Asgharzadeh, Shahab Avigad, Smadar Bao, Wenjun Bessarabova, Marina Brilliant, Murray H. Brors, Benedikt Chierici, Marco Chu, Tzu-Ming Zhang, Jibin Grundy, Richard G. He, Min Max Hebbring, Scott Kaufman, Howard L. Lababidi, Samir Lancashire, Lee J. Li, Yan Lu, Xin X. Luo, Heng Ma, Xiwen Ning, Baitang Noguera, Rosa Peifer, Martin Phan, John H. Roels, Frederik Rosswog, Carolina Shao, Susan Shen, Jie Theissen, Jessica Tonini, Gian Paolo Vandesompele, Jo Wu, Po-Yen Xiao, Wenzhong Xu, Joshua Xu, Weihong Xuan, Jiekun Yang, Yong Ye, Zhan Dong, Zirui Zhang, Ke K. Yin, Ye Zhao, Chen Zheng, Yuanting Wolfinger, Russell D. Shi, Tieliu Malkas, Linda H. Berthold, Frank Wang, Jun Tong, Weida Shi, Leming Peng, Zhiyu Fischer, Matthias Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title | Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title_full | Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title_fullStr | Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title_full_unstemmed | Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title_short | Comparison of RNA-seq and microarray-based models for clinical endpoint prediction |
title_sort | comparison of rna-seq and microarray-based models for clinical endpoint prediction |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506430/ https://www.ncbi.nlm.nih.gov/pubmed/26109056 http://dx.doi.org/10.1186/s13059-015-0694-1 |
work_keys_str_mv | AT zhangwenqian comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT yuying comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT hertwigfalk comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT thierrymiegjean comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT zhangwenwei comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT thierrymiegdanielle comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wangjian comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT furlanellocesare comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT devanarayanviswanath comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT chengjie comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT dengyouping comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT herobarbara comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT honghuixiao comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT jiameiwen comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT lili comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT linsimonm comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT nikolskyyuri comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT oberthuerandre comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT qingtao comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT suzhenqiang comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT vollandruth comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wangcharles comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wangmayd comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT aijunmei comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT albanesedavide comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT asgharzadehshahab comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT avigadsmadar comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT baowenjun comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT bessarabovamarina comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT brilliantmurrayh comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT brorsbenedikt comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT chiericimarco comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT chutzuming comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT zhangjibin comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT grundyrichardg comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT heminmax comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT hebbringscott comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT kaufmanhowardl comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT lababidisamir comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT lancashireleej comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT liyan comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT luxinx comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT luoheng comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT maxiwen comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT ningbaitang comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT noguerarosa comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT peifermartin comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT phanjohnh comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT roelsfrederik comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT rosswogcarolina comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT shaosusan comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT shenjie comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT theissenjessica comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT toninigianpaolo comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT vandesompelejo comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wupoyen comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT xiaowenzhong comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT xujoshua comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT xuweihong comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT xuanjiekun comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT yangyong comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT yezhan comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT dongzirui comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT zhangkek comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT yinye comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT zhaochen comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT zhengyuanting comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wolfingerrusselld comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT shitieliu comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT malkaslindah comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT bertholdfrank comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT wangjun comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT tongweida comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT shileming comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT pengzhiyu comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction AT fischermatthias comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction |