Cargando…

Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolys...

Descripción completa

Detalles Bibliográficos
Autores principales: Opitz, Alexander K, Nenning, Andreas, Rameshan, Christoph, Rameshan, Raffael, Blume, Raoul, Hävecker, Michael, Knop-Gericke, Axel, Rupprechter, Günther, Fleig, Jürgen, Klötzer, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506551/
https://www.ncbi.nlm.nih.gov/pubmed/25557533
http://dx.doi.org/10.1002/anie.201409527
_version_ 1782381706423042048
author Opitz, Alexander K
Nenning, Andreas
Rameshan, Christoph
Rameshan, Raffael
Blume, Raoul
Hävecker, Michael
Knop-Gericke, Axel
Rupprechter, Günther
Fleig, Jürgen
Klötzer, Bernhard
author_facet Opitz, Alexander K
Nenning, Andreas
Rameshan, Christoph
Rameshan, Raffael
Blume, Raoul
Hävecker, Michael
Knop-Gericke, Axel
Rupprechter, Günther
Fleig, Jürgen
Klötzer, Bernhard
author_sort Opitz, Alexander K
collection PubMed
description In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La(0.6)Sr(0.4)FeO(3−δ) (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity.
format Online
Article
Text
id pubmed-4506551
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher WILEY-VCH Verlag
record_format MEDLINE/PubMed
spelling pubmed-45065512015-07-22 Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes** Opitz, Alexander K Nenning, Andreas Rameshan, Christoph Rameshan, Raffael Blume, Raoul Hävecker, Michael Knop-Gericke, Axel Rupprechter, Günther Fleig, Jürgen Klötzer, Bernhard Angew Chem Int Ed Engl Communications In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La(0.6)Sr(0.4)FeO(3−δ) (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. WILEY-VCH Verlag 2015-02-23 2014-12-30 /pmc/articles/PMC4506551/ /pubmed/25557533 http://dx.doi.org/10.1002/anie.201409527 Text en © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Opitz, Alexander K
Nenning, Andreas
Rameshan, Christoph
Rameshan, Raffael
Blume, Raoul
Hävecker, Michael
Knop-Gericke, Axel
Rupprechter, Günther
Fleig, Jürgen
Klötzer, Bernhard
Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title_full Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title_fullStr Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title_full_unstemmed Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title_short Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**
title_sort enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ xps study on perovskite-type electrodes**
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506551/
https://www.ncbi.nlm.nih.gov/pubmed/25557533
http://dx.doi.org/10.1002/anie.201409527
work_keys_str_mv AT opitzalexanderk enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT nenningandreas enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT rameshanchristoph enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT rameshanraffael enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT blumeraoul enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT haveckermichael enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT knopgerickeaxel enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT rupprechtergunther enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT fleigjurgen enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes
AT klotzerbernhard enhancingelectrochemicalwatersplittingkineticsbypolarizationdrivenformationofnearsurfaceiron0aninsituxpsstudyonperovskitetypeelectrodes