Cargando…

Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum

BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Danny W, Goodman, Christopher D, Sleebs, Brad E, Weiss, Greta E, de Jong, Nienke WM, Angrisano, Fiona, Langer, Christine, Baum, Jake, Crabb, Brendan S, Gilson, Paul R, McFadden, Geoffrey I, Beeson, James G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506589/
https://www.ncbi.nlm.nih.gov/pubmed/26187647
http://dx.doi.org/10.1186/s12915-015-0162-0
_version_ 1782381715145097216
author Wilson, Danny W
Goodman, Christopher D
Sleebs, Brad E
Weiss, Greta E
de Jong, Nienke WM
Angrisano, Fiona
Langer, Christine
Baum, Jake
Crabb, Brendan S
Gilson, Paul R
McFadden, Geoffrey I
Beeson, James G
author_facet Wilson, Danny W
Goodman, Christopher D
Sleebs, Brad E
Weiss, Greta E
de Jong, Nienke WM
Angrisano, Fiona
Langer, Christine
Baum, Jake
Crabb, Brendan S
Gilson, Paul R
McFadden, Geoffrey I
Beeson, James G
author_sort Wilson, Danny W
collection PubMed
description BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS: Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite’s options for resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0162-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4506589
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45065892015-07-19 Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum Wilson, Danny W Goodman, Christopher D Sleebs, Brad E Weiss, Greta E de Jong, Nienke WM Angrisano, Fiona Langer, Christine Baum, Jake Crabb, Brendan S Gilson, Paul R McFadden, Geoffrey I Beeson, James G BMC Biol Research Article BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS: Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite’s options for resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0162-0) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-18 /pmc/articles/PMC4506589/ /pubmed/26187647 http://dx.doi.org/10.1186/s12915-015-0162-0 Text en © Wilson et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Wilson, Danny W
Goodman, Christopher D
Sleebs, Brad E
Weiss, Greta E
de Jong, Nienke WM
Angrisano, Fiona
Langer, Christine
Baum, Jake
Crabb, Brendan S
Gilson, Paul R
McFadden, Geoffrey I
Beeson, James G
Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title_full Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title_fullStr Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title_full_unstemmed Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title_short Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
title_sort macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, plasmodium falciparum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506589/
https://www.ncbi.nlm.nih.gov/pubmed/26187647
http://dx.doi.org/10.1186/s12915-015-0162-0
work_keys_str_mv AT wilsondannyw macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT goodmanchristopherd macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT sleebsbrade macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT weissgretae macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT dejongnienkewm macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT angrisanofiona macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT langerchristine macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT baumjake macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT crabbbrendans macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT gilsonpaulr macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT mcfaddengeoffreyi macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum
AT beesonjamesg macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum