Cargando…
Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum
BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demon...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506589/ https://www.ncbi.nlm.nih.gov/pubmed/26187647 http://dx.doi.org/10.1186/s12915-015-0162-0 |
_version_ | 1782381715145097216 |
---|---|
author | Wilson, Danny W Goodman, Christopher D Sleebs, Brad E Weiss, Greta E de Jong, Nienke WM Angrisano, Fiona Langer, Christine Baum, Jake Crabb, Brendan S Gilson, Paul R McFadden, Geoffrey I Beeson, James G |
author_facet | Wilson, Danny W Goodman, Christopher D Sleebs, Brad E Weiss, Greta E de Jong, Nienke WM Angrisano, Fiona Langer, Christine Baum, Jake Crabb, Brendan S Gilson, Paul R McFadden, Geoffrey I Beeson, James G |
author_sort | Wilson, Danny W |
collection | PubMed |
description | BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS: Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite’s options for resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0162-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4506589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45065892015-07-19 Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum Wilson, Danny W Goodman, Christopher D Sleebs, Brad E Weiss, Greta E de Jong, Nienke WM Angrisano, Fiona Langer, Christine Baum, Jake Crabb, Brendan S Gilson, Paul R McFadden, Geoffrey I Beeson, James G BMC Biol Research Article BACKGROUND: Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion. RESULTS: Here, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy. CONCLUSIONS: Safe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite’s options for resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0162-0) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-18 /pmc/articles/PMC4506589/ /pubmed/26187647 http://dx.doi.org/10.1186/s12915-015-0162-0 Text en © Wilson et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Wilson, Danny W Goodman, Christopher D Sleebs, Brad E Weiss, Greta E de Jong, Nienke WM Angrisano, Fiona Langer, Christine Baum, Jake Crabb, Brendan S Gilson, Paul R McFadden, Geoffrey I Beeson, James G Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title | Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title_full | Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title_fullStr | Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title_full_unstemmed | Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title_short | Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum |
title_sort | macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, plasmodium falciparum |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506589/ https://www.ncbi.nlm.nih.gov/pubmed/26187647 http://dx.doi.org/10.1186/s12915-015-0162-0 |
work_keys_str_mv | AT wilsondannyw macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT goodmanchristopherd macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT sleebsbrade macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT weissgretae macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT dejongnienkewm macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT angrisanofiona macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT langerchristine macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT baumjake macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT crabbbrendans macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT gilsonpaulr macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT mcfaddengeoffreyi macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum AT beesonjamesg macrolidesrapidlyinhibitredbloodcellinvasionbythehumanmalariaparasiteplasmodiumfalciparum |