Cargando…

Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Kandala, Abhinav, Richardella, Anthony, Kempinger, Susan, Liu, Chao-Xing, Samarth, Nitin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507013/
https://www.ncbi.nlm.nih.gov/pubmed/26151318
http://dx.doi.org/10.1038/ncomms8434
Descripción
Sumario:When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Cr(x)(Bi,Sb)(2−x)Te(3) thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.