Cargando…
Target Localization in Wireless Sensor Networks Using Online Semi-Supervised Support Vector Regression
Machine learning has been successfully used for target localization in wireless sensor networks (WSNs) due to its accurate and robust estimation against highly nonlinear and noisy sensor measurement. For efficient and adaptive learning, this paper introduces online semi-supervised support vector reg...
Autores principales: | Yoo, Jaehyun, Kim, H. Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507659/ https://www.ncbi.nlm.nih.gov/pubmed/26024420 http://dx.doi.org/10.3390/s150612539 |
Ejemplares similares
-
Time-Series Laplacian Semi-Supervised Learning for Indoor Localization †
por: Yoo, Jaehyun
Publicado: (2019) -
Target Tracking and Classification from Labeled and Unlabeled Data in Wireless Sensor Networks
por: Yoo, Jaehyun, et al.
Publicado: (2014) -
Hierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning
por: Wang, Xue, et al.
Publicado: (2007) -
Multi-Path Routing Algorithm for Wireless Sensor Network Based on Semi-Supervised Learning
por: Guo, Yiping, et al.
Publicado: (2022) -
Iterative Regression Based Hybrid Localization for Wireless Sensor Networks
por: Lee, Kyunghyun, et al.
Publicado: (2021)