Cargando…
Real-Time Human Pose Estimation and Gesture Recognition from Depth Images Using Superpixels and SVM Classifier
In this paper, we present human pose estimation and gesture recognition algorithms that use only depth information. The proposed methods are designed to be operated with only a CPU (central processing unit), so that the algorithm can be operated on a low-cost platform, such as an embedded board. The...
Autores principales: | Kim, Hanguen, Lee, Sangwon, Lee, Dongsung, Choi, Soonmin, Ju, Jinsun, Myung, Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507703/ https://www.ncbi.nlm.nih.gov/pubmed/26016921 http://dx.doi.org/10.3390/s150612410 |
Ejemplares similares
-
An Adaptive Superpixel Based Hand Gesture Tracking and Recognition System
por: Zhu, Hong-Min, et al.
Publicado: (2014) -
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition
por: Song, QingJun, et al.
Publicado: (2017) -
Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier
por: Wu, Yanjuan, et al.
Publicado: (2023) -
Superpixel-Based Feature for Aerial Image Scene Recognition
por: Li, Hongguang, et al.
Publicado: (2018) -
A hybrid CNN–SVM classifier for weed recognition in winter rape field
por: Tao, Tao, et al.
Publicado: (2022)