Cargando…

Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, absc...

Descripción completa

Detalles Bibliográficos
Autores principales: Brandt, Benjamin, Munemasa, Shintaro, Wang, Cun, Nguyen, Desiree, Yong, Taiming, Yang, Paul G, Poretsky, Elly, Belknap, Thomas F, Waadt, Rainer, Alemán, Fernando, Schroeder, Julian I
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507714/
https://www.ncbi.nlm.nih.gov/pubmed/26192964
http://dx.doi.org/10.7554/eLife.03599
_version_ 1782381841396793344
author Brandt, Benjamin
Munemasa, Shintaro
Wang, Cun
Nguyen, Desiree
Yong, Taiming
Yang, Paul G
Poretsky, Elly
Belknap, Thomas F
Waadt, Rainer
Alemán, Fernando
Schroeder, Julian I
author_facet Brandt, Benjamin
Munemasa, Shintaro
Wang, Cun
Nguyen, Desiree
Yong, Taiming
Yang, Paul G
Poretsky, Elly
Belknap, Thomas F
Waadt, Rainer
Alemán, Fernando
Schroeder, Julian I
author_sort Brandt, Benjamin
collection PubMed
description A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001
format Online
Article
Text
id pubmed-4507714
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-45077142015-07-21 Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells Brandt, Benjamin Munemasa, Shintaro Wang, Cun Nguyen, Desiree Yong, Taiming Yang, Paul G Poretsky, Elly Belknap, Thomas F Waadt, Rainer Alemán, Fernando Schroeder, Julian I eLife Plant Biology A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 eLife Sciences Publications, Ltd 2015-07-20 /pmc/articles/PMC4507714/ /pubmed/26192964 http://dx.doi.org/10.7554/eLife.03599 Text en © 2015, Brandt et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Plant Biology
Brandt, Benjamin
Munemasa, Shintaro
Wang, Cun
Nguyen, Desiree
Yong, Taiming
Yang, Paul G
Poretsky, Elly
Belknap, Thomas F
Waadt, Rainer
Alemán, Fernando
Schroeder, Julian I
Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title_full Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title_fullStr Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title_full_unstemmed Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title_short Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells
title_sort calcium specificity signaling mechanisms in abscisic acid signal transduction in arabidopsis guard cells
topic Plant Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507714/
https://www.ncbi.nlm.nih.gov/pubmed/26192964
http://dx.doi.org/10.7554/eLife.03599
work_keys_str_mv AT brandtbenjamin calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT munemasashintaro calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT wangcun calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT nguyendesiree calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT yongtaiming calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT yangpaulg calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT poretskyelly calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT belknapthomasf calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT waadtrainer calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT alemanfernando calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells
AT schroederjuliani calciumspecificitysignalingmechanismsinabscisicacidsignaltransductioninarabidopsisguardcells