Cargando…
A Benchmark Data Set to Evaluate the Illumination Robustness of Image Processing Algorithms for Object Segmentation and Classification
Developers of image processing routines rely on benchmark data sets to give qualitative comparisons of new image analysis algorithms and pipelines. Such data sets need to include artifacts in order to occlude and distort the required information to be extracted from an image. Robustness, the quality...
Autores principales: | Khan, Arif ul Maula, Mikut, Ralf, Reischl, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508044/ https://www.ncbi.nlm.nih.gov/pubmed/26191792 http://dx.doi.org/10.1371/journal.pone.0131098 |
Ejemplares similares
-
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
por: Khan, Arif ul Maula, et al.
Publicado: (2016) -
AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques
por: Khan, Arif ul Maula, et al.
Publicado: (2018) -
Robust 2D Otsu's Algorithm for Uneven Illumination Image Segmentation
por: Xing, Jiangwa, et al.
Publicado: (2020) -
Robust Ulcer Classification: Contrast and Illumination Invariant Approach
por: Alhajlah, Mousa
Publicado: (2022) -
Enhancing deep-learning training for phase identification in powder X-ray diffractograms
por: Schuetzke, Jan, et al.
Publicado: (2021)