Cargando…

Constitutive Expresser of Pathogenesis Related Genes 1 Is Required for Pavement Cell Morphogenesis in Arabidopsis

For over 50 years, researchers have focused on the mechanisms underlying the important roles of the cytoskeleton in controlling the cell growth direction and cell expansion. In our study, we performed ethyl methane sulfonate mutagenesis on Col-0 background and identified two new CONSTITUTIVE EXPRESS...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Bing, Chen, Liang, Wang, Jing, Wu, Zhongliang, Yan, Longfeng, Hou, Suiwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508093/
https://www.ncbi.nlm.nih.gov/pubmed/26193674
http://dx.doi.org/10.1371/journal.pone.0133249
Descripción
Sumario:For over 50 years, researchers have focused on the mechanisms underlying the important roles of the cytoskeleton in controlling the cell growth direction and cell expansion. In our study, we performed ethyl methane sulfonate mutagenesis on Col-0 background and identified two new CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED GENES 1 (CPR1) alleles with pavement cell (PC) morphogenetic defects. Morphological characterizations showed that polar growth initiation and expansion of PCs are seriously suppressed in cpr1. Closer cytoskeleton investigation showed that the directional arrangement of microtubules (MTs) during PC development is defective and the cortical fine actin filaments cannot be aggregated effectively to form actin cable networks in cpr1 mutants. These results suggest that the abnormal PC morphogenesis in cpr1 is accompanying with the aberrant arrangement of cytoskeleton. Site-directed mutagenesis and knockout within the F-box-associated (FBA) domain, which is reported to be a motif for recognizing particular substrates of CPR1, proved that the FBA domain is indispensable for normal CPR1 regulation of the PC morphogenesis. Further genetic analysis indicated that the defects on PC morphogenesis of cpr1 depend on two lipase-like proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4. Our results provide further insights into the relationship between the cytoskeleton and PC morphogenesis, and suggest that the cytoskeleton-mediated PC morphogenesis control might be tightly linked to plant defense responses.