Cargando…
Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing
We reveal that quadrature squeezing can result in significantly better quantum-estimation performance with quantum heterodyne detection (of H. P. Yuen and J. H. Shapiro) as compared to quantum homodyne detection for Gaussian states, which touches an important aspect in the foundational understanding...
Autores principales: | Řeháček, Jaroslav, Teo, Yong Siah, Hradil, Zdeněk, Wallentowitz, Sascha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508669/ https://www.ncbi.nlm.nih.gov/pubmed/26195198 http://dx.doi.org/10.1038/srep12289 |
Ejemplares similares
-
Crystallizing highly-likely subspaces that contain an unknown quantum state of light
por: Teo, Yong Siah, et al.
Publicado: (2016) -
Corrigendum: Crystallizing highly-likely subspaces that contain an unknown quantum state of light
por: Siah Teo, Yong, et al.
Publicado: (2017) -
Gaussian quadrature formulas
por: Stroud, A. H.
Publicado: (1966) -
Gaussian quadrature formulas
por: Stroud, Arthur H, et al.
Publicado: (1966) -
Estimating Non-Gaussianity of a Quantum State by Measuring Orthogonal Quadratures
por: Park, Jiyong
Publicado: (2022)