Cargando…
An advanced fragment analysis-based individualized subtype classification of pediatric acute lymphoblastic leukemia
Pediatric acute lymphoblastic leukemia (ALL) is the most common neoplasm and one of the primary causes of death in children. Its treatment is highly dependent on the correct classification of subtype. Previously, we developed a microarray-based subtype classifier based on the relative expression lev...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508914/ https://www.ncbi.nlm.nih.gov/pubmed/26196328 http://dx.doi.org/10.1038/srep12435 |
Sumario: | Pediatric acute lymphoblastic leukemia (ALL) is the most common neoplasm and one of the primary causes of death in children. Its treatment is highly dependent on the correct classification of subtype. Previously, we developed a microarray-based subtype classifier based on the relative expression levels of 62 marker genes, which can predict 7 different ALL subtypes with an accuracy as high as 97% in completely independent samples. Because the classifier is based on gene expression rank values rather than actual values, the classifier enables an individualized diagnosis, without the need to reference the background distribution of the marker genes in a large number of other samples, and also enables cross platform application. Here, we demonstrate that the classifier can be extended from a microarray-based technology to a multiplex qPCR-based technology using the same set of marker genes as the advanced fragment analysis (AFA). Compared to microarray assays, the new assay system makes the convenient, low cost and individualized subtype diagnosis of pediatric ALL a reality and is clinically applicable, particularly in developing countries. |
---|