Cargando…
Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage
BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two ro...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509613/ https://www.ncbi.nlm.nih.gov/pubmed/26194104 http://dx.doi.org/10.1186/s12864-015-1745-4 |
_version_ | 1782382056768012288 |
---|---|
author | Papenfuss, Anthony T Feng, Zhi-Ping Krasnec, Katina Deakin, Janine E Baker, Michelle L Miller, Robert D |
author_facet | Papenfuss, Anthony T Feng, Zhi-Ping Krasnec, Katina Deakin, Janine E Baker, Michelle L Miller, Robert D |
author_sort | Papenfuss, Anthony T |
collection | PubMed |
description | BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. RESULTS: Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. CONCLUSIONS: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1745-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4509613 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45096132015-07-22 Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage Papenfuss, Anthony T Feng, Zhi-Ping Krasnec, Katina Deakin, Janine E Baker, Michelle L Miller, Robert D BMC Genomics Research Article BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. RESULTS: Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. CONCLUSIONS: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1745-4) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-22 /pmc/articles/PMC4509613/ /pubmed/26194104 http://dx.doi.org/10.1186/s12864-015-1745-4 Text en © Papenfuss et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Papenfuss, Anthony T Feng, Zhi-Ping Krasnec, Katina Deakin, Janine E Baker, Michelle L Miller, Robert D Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title | Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title_full | Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title_fullStr | Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title_full_unstemmed | Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title_short | Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage |
title_sort | marsupials and monotremes possess a novel family of mhc class i genes that is lost from the eutherian lineage |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509613/ https://www.ncbi.nlm.nih.gov/pubmed/26194104 http://dx.doi.org/10.1186/s12864-015-1745-4 |
work_keys_str_mv | AT papenfussanthonyt marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage AT fengzhiping marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage AT krasneckatina marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage AT deakinjaninee marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage AT bakermichellel marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage AT millerrobertd marsupialsandmonotremespossessanovelfamilyofmhcclassigenesthatislostfromtheeutherianlineage |