Cargando…

Potential Reparative Role of Resident Adult Renal Stem/Progenitor Cells in Acute Kidney Injury

Human kidney is particularly susceptible to ischemia and toxins with consequential tubular necrosis and activation of inflammatory processes. This process can lead to the acute renal injury, and even if the kidney has a great capacity for regeneration after tubular damage, in several circumstances,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sallustio, Fabio, Serino, Grazia, Schena, Francesco Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509615/
https://www.ncbi.nlm.nih.gov/pubmed/26309808
http://dx.doi.org/10.1089/biores.2015.0011
Descripción
Sumario:Human kidney is particularly susceptible to ischemia and toxins with consequential tubular necrosis and activation of inflammatory processes. This process can lead to the acute renal injury, and even if the kidney has a great capacity for regeneration after tubular damage, in several circumstances, the normal renal repair program may not be sufficient to achieve a successful regeneration. Resident adult renal stem/progenitor cells could participate in this repair process and have the potentiality to enhance the renal regenerative mechanism. This could be achieved both directly, by means of their capacity to differentiate and integrate into the renal tissues, and by means of paracrine factors able to induce or improve the renal repair or regeneration. Recent genetic fate-tracing studies indicated that tubular damage is instead repaired by proliferative duplication of epithelial cells, acquiring a transient progenitor phenotype and by fate-restricted clonal cell progeny emerging from different nephron segments. In this review, we discuss about the properties and the reparative characteristics of high regenerative CD133(+)/CD24(+) cells, with a view to a future application of these cells for the treatment of acute renal injury.