Cargando…

mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling

mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Hämäläinen, Riikka H., Ahlqvist, Kati J., Ellonen, Pekka, Lepistö, Maija, Logan, Angela, Otonkoski, Timo, Murphy, Michael P., Suomalainen, Anu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509707/
https://www.ncbi.nlm.nih.gov/pubmed/26027936
http://dx.doi.org/10.1016/j.celrep.2015.05.009
_version_ 1782382069656059904
author Hämäläinen, Riikka H.
Ahlqvist, Kati J.
Ellonen, Pekka
Lepistö, Maija
Logan, Angela
Otonkoski, Timo
Murphy, Michael P.
Suomalainen, Anu
author_facet Hämäläinen, Riikka H.
Ahlqvist, Kati J.
Ellonen, Pekka
Lepistö, Maija
Logan, Angela
Otonkoski, Timo
Murphy, Michael P.
Suomalainen, Anu
author_sort Hämäläinen, Riikka H.
collection PubMed
description mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H(2)O(2), reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function.
format Online
Article
Text
id pubmed-4509707
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-45097072015-08-01 mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling Hämäläinen, Riikka H. Ahlqvist, Kati J. Ellonen, Pekka Lepistö, Maija Logan, Angela Otonkoski, Timo Murphy, Michael P. Suomalainen, Anu Cell Rep Article mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H(2)O(2), reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function. Cell Press 2015-05-28 /pmc/articles/PMC4509707/ /pubmed/26027936 http://dx.doi.org/10.1016/j.celrep.2015.05.009 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hämäläinen, Riikka H.
Ahlqvist, Kati J.
Ellonen, Pekka
Lepistö, Maija
Logan, Angela
Otonkoski, Timo
Murphy, Michael P.
Suomalainen, Anu
mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title_full mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title_fullStr mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title_full_unstemmed mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title_short mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling
title_sort mtdna mutagenesis disrupts pluripotent stem cell function by altering redox signaling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509707/
https://www.ncbi.nlm.nih.gov/pubmed/26027936
http://dx.doi.org/10.1016/j.celrep.2015.05.009
work_keys_str_mv AT hamalainenriikkah mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT ahlqvistkatij mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT ellonenpekka mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT lepistomaija mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT loganangela mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT otonkoskitimo mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT murphymichaelp mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling
AT suomalainenanu mtdnamutagenesisdisruptspluripotentstemcellfunctionbyalteringredoxsignaling