Cargando…

Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans

The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use com...

Descripción completa

Detalles Bibliográficos
Autor principal: Giller, Cole A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509870/
https://www.ncbi.nlm.nih.gov/pubmed/22066596
http://dx.doi.org/10.1177/153303461101000606
_version_ 1782382086956515328
author Giller, Cole A.
author_facet Giller, Cole A.
author_sort Giller, Cole A.
collection PubMed
description The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. ‘GK simulator’ software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
format Online
Article
Text
id pubmed-4509870
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-45098702015-08-11 Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans Giller, Cole A. Technol Cancer Res Treat Article The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. ‘GK simulator’ software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods. SAGE Publications 2011-12 /pmc/articles/PMC4509870/ /pubmed/22066596 http://dx.doi.org/10.1177/153303461101000606 Text en © 2011 SAGE Publications http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(http://www.uk.sagepub.com/aboutus/openaccess.htm).
spellingShingle Article
Giller, Cole A.
Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title_full Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title_fullStr Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title_full_unstemmed Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title_short Feasibility of Identification of Gamma Knife Planning Strategies by Identification of Pareto Optimal Gamma Knife Plans
title_sort feasibility of identification of gamma knife planning strategies by identification of pareto optimal gamma knife plans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509870/
https://www.ncbi.nlm.nih.gov/pubmed/22066596
http://dx.doi.org/10.1177/153303461101000606
work_keys_str_mv AT gillercolea feasibilityofidentificationofgammaknifeplanningstrategiesbyidentificationofparetooptimalgammaknifeplans