Cargando…
Adaptability to changes in temporal structure is fornix-dependent
Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4509921/ https://www.ncbi.nlm.nih.gov/pubmed/26179228 http://dx.doi.org/10.1101/lm.038851.115 |
Sumario: | Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys with normal monkeys on two versions of a delayed-matching-to-position task with short delays. Spatial recognition memory was affected by fornix transection only when the temporal structure of the task changed across trials, while differences in motor control, motivation, perception, or short-term memory were not critical. We attributed the deficit to a compromised ability in tracking changes in task temporal structure. |
---|